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OPTIMAL CONTROL OF A QUEUEING SYSTEM WITH
PM

λ -SERVICE POLICY

Sunggon Kim and Jongho Bae

Abstract. We consider an M/G/1 queue with P M
λ -service policy, which

is a two-stage service policy. The server starts to serve with rate 1 if a job

arrives to the sever in idle state. If the workload of the system upcrosses
λ, then the service rate is changed to M and this rate continues until the
system is empty. It costs to change the service rate to M and maintaining

the rate. When the expectation of the stationary workload is supposed
to be less than a given value, we derive the optimal value of M .

1. Introduction

In this paper, an M/G/1 queueing system with PM
λ - service policy is con-

sidered. The queueing system with the policy serves jobs with two different
service rates. Server is initially idle and starts to work with service rate 1
when a job arrives. The jobs arrive according to a Poisson process of rate
ν > 0 and the amount of work of jobs are independent and identically dis-
tributed with distribution function G. The server increases his/her service rate
to M ≥ 1 instantaneously, if the workload(often called virtual waiting time)
exceeds threshold λ > 0, and continues to serve at rate M until the system
becomes idle. The server restarts to work with service rate 1 when another job
arrives. For the generality of the policy, we consider the case of M = 1. In this
case, the queueing process with the policy is identical to the ordinary M/G/1
queueing system.

PM
λ - service policy has been proposed by Bae et al. [2]. It is a two-stage

service policy, which is an application of the well-known PM
λ -releasing pol-

icy [5, 8, 13] in dam theory to the M/G/1 queueing system. In contrast with
the present model, the dam with PM

λ -releasing policy does not release the wa-
ter until the level of water upcrosses the threshold λ. Using the level crossing
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technique [3, 4] and decomposition method [8], Bae et al. obtained the sta-
tionary distribution of the workload process of the queueing system with the
policy. Recently, Lee [9], Lee and Kim [10] extended PM

λ -service policy to the
queueing system with vacations or set-up times. Kim and Bae [7] applied the
policy to G/M/1 queueing system and they obtained the stationary workload
of the system.

Kim et al. [6] considered the problem of finding optimal service rate M under
a cost structure. Four costs are considered by them: the operating cost per unit
time when the service rate is M , the cost of increasing the service rate from 1 to
M , the penalty cost per unit time while the server is idle, the holding cost of a
unit workload per unit time. Under the cost structure, PM

λ -service policy with
the optimal service rate M controls the queueing system so that the system
has low workload in average and has low proportion of idle periods while the
operating cost and the cost of increasing service rate are low. However, in some
situations, a specific quality of service (QoS) are required. For example, mean
waiting time, variance of waiting time, and the probability that the workload
exceeds a given amount are required to be less than fixed values. In this paper,
we consider the case that the mean waiting time is required to be less than a
fixed value. To this end, we define some costs and address the problem how to
find the optimal service rate M .

2. Decomposition of the workload process

Let m be the mean amount of the work induced by a job. Then, the traffic
intensity ρ = νm is the mean amount of work induced by jobs during a unit
time. For the stability of the system, we assume M > ρ. Note that we assume
M ≥ 1. Then, the workload process of the system is regenerative process. Let
{X(t); t ≥ 0} be the workload process of M/G/1 queueing system with PM

λ -
service policy. The regeneration points of workload process {X(t); t ≥ 0} are
the epochs when the server starts to work after an idle period. The process
{X(t); t ≥ 0} is non-Markovian, which make it difficult to analyze the process.
To overcome this, we decompose {X(t); t ≥ 0} into three processes {X1(t); t ≥
0}, {X2(t); t ≥ 0}, and {X3(t); t ≥ 0} as the authors have done in [2]. Process
{X1(t); t ≥ 0} is formed by separating the periods of service rate 1 from the
original process and then connecting these together. In the similar manner,
Process {X2(t); t ≥ 0} is formed from the periods of service rate M . Process
{X3(t); t ≥ 0} is formed by connecting the rest of original process, that is, the
idle periods. Then, X3(t) ≡ 0 for all t ≥ 0. See figures 1, 2, and 3.

Processes {X1(t); t ≥ 0} and {X2(t); t ≥ 0} are now Markovian regenerative
processes. In both processes, we will call each separated segment a cycle. The
starting levels of cycles in {X1(t); t ≥ 0} are independent and have the same
distribution function G(x)/G(λ), 0 ≤ x ≤ λ. The starting levels of cycles in
{X2(t); t ≥ 0} are also independent and have the same distributions as random
variable Sa, where Sa = λ + L and L is the first exceeding amount over λ



OPTIMAL CONTROL OF A QUEUEING SYSTEM WITH P M
λ -SERVICE POLICY 47

X(t)

0

T
3T2T

 rate M

t

rate 1

T1

λ

Figure 1. A sample path of workload process {X(t), t ≥ 0}
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Figure 3. A sample path of {X2(t), t ≥ 0}

after the server restarts to work in the original process. Each idle period of the
original process becomes a cycle in {X3(t); t ≥ 0}.

Let Fi(x) be the stationary distribution function of {Xi(t); t ≥ 0}, and Ti be
the length of a cycle in {Xi(t); t ≥ 0}, for i = 1, 2, 3. Let F (x) be the stationary
distribution function of {X(t); t ≥ 0} and T be the length of a regeneration
cycle in {X(t); t ≥ 0}. See figures 1, 2, and 3. Using the renewal reward
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theorem [11, p.133], Bae et al. [2] showed that for x ≥ 0,

(1) F (x) =
αE[T1]
E[T ]

F1(x) +
βE[T2]
E[T ]

F2(x) +
1/ν

E[T ]
,

where α and β are the probabilities that there exists a period of service rate 1
and a period of service rate M in a cycle of {X(t); t ≥ 0}, respectively. Then,
E[T ] = αE[T1] + βE[T2] + 1/ν.

3. Costs of the system

Kim et al. [6] considered the problem of finding optimal service rate M under
a cost structure. Four costs are considered by them:

• h(M): the operating cost per unit time when the service rate is M .
• g(M): the cost of increasing the service rate from 1 to M .
• Ci: the penalty cost per unit time while the server is idle.
• Ch: the holding cost of a unit workload per unit time.

The cost function of a queueing system with PM
λ -service policy is the sum of

the costs in the above. The functions h(M) and g(M) are defined for M ≥ 1
because it is assume that M ≥ 1. When M = 1, there is no change of service
rate, therefore, no cost occurred, which implies h(1) = 0 and g(1) = 0. They
assumed that h(M) and g(M) are nondecreasing and twice differentiable convex
functions including linear functions. These are usually assumed for the cost
functions. They also assumed that Ci and Ch are positive. By doing this, PM

λ -
service policy with the service rate M of the minimum total cost controls the
queueing system so that the system may has low workload in average and has
low proportion of idle periods while the operating cost and the cost of increasing
service rate are low. In this paper, we consider the case that the mean waiting
time is required to be less than a fixed value. In other words, the time which
a job spends in the system is expected to be less than a fixed value. Then,
there is no reason to consider the penalty cost for the idle state of the server
and the holding cost, in other words, Ci = 0 and Ch = 0. We assume that
h(M) and g(M) are strictly increasing and twice differentiable convex function
including linear functions. The cost during a cycle in the present model is
βg(M) + βE[T2]h(M) in average. Since the mean cycle length is E[T ], the
problem to solve is the following:

minimize C(M) =
β

E[T ]
g(M) +

βE[T2]
E[T ]

h(M).

subject to E[W ] ≤ w0,

(2)

where W is the waiting time of a job and w0 is a constant. To solve the
nonlinear optimization problem in the above, we need to know the explicit
form of E[W ]. However, it is difficult to obtain the explicit form of E[W ]. Let
Y be the workload of the system at the arrival of a job. Then, it is clear that
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W ≤ Y . Thus, E[Y ] ≤ w0 implies that E[W ] ≤ w0. Now, in this paper, we
consider the following nonlinear programming:

minimize C(M) =
β

E[T ]
g(M) +

βE[T2]
E[T ]

h(M).

subject to E[Y ] ≤ w0,

(3)

The optimal solution of the above problem is not the optimal solution of the
problem (2). However, it is a feasible solution and can be used as an approxi-
mate optimal rate M of the problem (2).

To solve the nonlinear optimization problem in the above, we need to know
the explicit form of E[T2], E[T ], E[Y ] and the values of α and β. E[Y ] will be
obtained in the next section. Clearly, α = G(λ). Bae et al. [2] obtained that

β =
H ′(λ)
νH(λ)

, E[T1] =
1

νG(λ)

(
H(λ) − 1 − H ′(λ)

H(λ)

∫ λ

0

H(x)dx

)
,

where H(x) =
∑∞

n=0 ρnG∗n
e (x), Ge(x) = (1/m)

∫ x

0
(1−G(u))du, the equilibrium

distribution function of G, and ∗n is the n-fold Stieltjes convolution with G∗0
e

being Heaviside function. It is shown in Asmussen [1, p.113] that H(x) is
well-defined for all nonnegative ρ and x. Since the process {X2(t); t ≥ 0} in a
cycle is identical to the workload process of an M/G/1 queueing system with
initial workload Sa in a busy period, it follows from Wolff [12, p.393] that the
expectation of T2 is given by

E[T2] =
E[Sa]
M − ρ

.

The probability density function of Sa is also obtained by Bae et al. [2].
However, the explicit form is complicated. Kim et al. [6] obtained a simpler
form of Pr{Sa > s}, which is given by, for s ≥ λ,

Pr{Sa > s} =
νH(λ)
H ′(λ)

∫ λ

0−
(1 − G(s − u)) dH(u) − ν

∫ λ

0

(1 − G(s − u))H(u) du.

By integrating the above, we derive

E[Sa] =
H(λ)
H ′(λ)

− (1 − ρ)
H(λ)2

H ′(λ)
+ (1 − ρ)

∫ λ

0

H(u) du.

4. Analysis of the cost function

From the results of the pervious section, we can see that

C(M) =
βg(M) + βE[Sa]h(M)/(M − ρ)
αE[T1] + βE[Sa]/(M − ρ) + 1/ν

.

Let A = αE[T1] + 1/ν. Then, the above equation is rewritten as

(4) C(M) =
(M − ρ)βg(M) + βE[Sa]h(M)

A(M − ρ) + βE[Sa]
.
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The behavior of the function C(M) is given by the following proposition.

Proposition 1. If ρ ≥ 1 and βE[Sa]h′(ρ)−Ah(ρ) + βg(ρ) < 0, then C(M) is
strictly decreasing for M < m0 and strictly increasing for M > m0, where m0

is the solution of the equation βE[Sa]h′(M)−Ah(M)+βg(M) = 0. Otherwise,
C(M) is strictly increasing.

Proof. By differentiating Eq. (4) with respect to M , we have

C ′(M) =
βE[Sa]N(M)

(A(M − ρ) + βE[Sa])2
,

where
(5)

N(M) =
(

A(M − ρ)
E[Sa]

+ β

)
(E[Sa]h′(M) + (M − ρ)g′(M))+βg(M)−Ah(M).

The derivative of N(M) is computed as

(6) N ′(M) =
(

A(M − ρ)
E[Sa]

+ β

)
(E[Sa]h′′(M) + (M − ρ)g′′(M) + 2g′(M)) .

Since h(M) and g(M) are strictly increasing and twice differentiable convex
functions for M > 1, we have that N ′(M) > 0 for M > 1. Thus, N(M) is
strictly increasing function for M > 1. Since g(M) is strictly increasing and
convex, g′(M) > ϵ for M > 1 + δ, where δ and ϵ are positive numbers. Then,
Eqn. (6) says that N(M) goes to ∞ as M goes to ∞.

Note that M is assumed to be larger than max{1, ρ}. Thus, N(M) has its
infimum value at max{1, ρ}. When ρ < 1, we obtain by substituting 1 to M in
Eq. (5) that for M > 1,

N(M) >

(
A(1 − ρ)
E[Sa]

+ β

)
(E[Sa]h′(1) + (1 − ρ)g′(1)) ,

which is nonnegative. When ρ ≥ 1, we obtain by substituting ρ to M in Eq. (5)
that for M > ρ,

N(M) > βE[Sa]h′(ρ) − Ah(ρ) + βg(ρ),

whose value can be negative or positive. C ′(M) has the same sign as N(M),
which completes the proof.

The above proposition says that C(M) has its minimum at M = m0 if
ρ ≥ 1 and βE[Sa]h′(ρ)−Ah(ρ) + βg(ρ) < 0. Otherwise, it has its minimum at
M = max{1, ρ}.

5. Expected workload seen by a job and its behavior

In this section, we obtain E[Y ], the expected workload seen by a job. Since
the arrival process is Poisson, PASTA [12] says that the workload seen by a job
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has the same distribution as the stationary workload, i.e. F (x). From Eq. (1),
it follows that

(7) E[Y ] =
αE[T1]
E[T ]

E[Y1] +
βE[T2]
E[T ]

E[Y2],

where Y1 and Y2 are the stationary workload of the processes {X1(t), t ≥ 0}
and {X2(t), t ≥ 0}, respectively.

Proposition 2. Let Y be the workload seen by a job. Then,

E[Y ] =
B + (βE[S2

a]/2)/(M − ρ) + (νβE[Sa]E[S2]/2)/(M − ρ)2

A + βE[Sa]/(M − ρ)
,

where

B =
1
ν

(∫ λ

0

x dH(x) +
H ′(λ)
2H(λ)

∫ λ

0

x2 dH(x) − λ2

2
H ′(λ)

)
.

Proof. Let f1(x) and f2(x) be the derivatives of F1(x) and F2(x), respec-
tively. Then, Bae et al. [2] obtained that

f1(x) =
1

ναE[T1]

(
H ′(x) − H(x)H ′(λ)

H(λ)

)
,

and, for 0 < x ≤ λ,

f2(x) =
HM (x)
E[T2]

,

for x ≥ λ,

f2(x) =
HM (x) −

∫ x

λ
HM (x − y)fSa(y)dy

E[T2]
,

where HM (x) =
∑∞

n=0(ρ/M)nG∗n
e (x) and fSa(x) is the probability density

function of Sa. From the above equations, we can evaluate

E[Y1] =
1

ναE[T1]

(∫ λ

0

x dH(x) +
H ′(λ)
2H(λ)

∫ λ

0

x2 dH(x) − λ2

2
H ′(λ)

)
and

E[Y2] =
1

2E[T2]

(
E[S2

a]
(M − ρ)

+
νE[Sa]E[S2]

(M − ρ)2

)
.

Another approach to derive E[Y2] is given by Kim et al. [6]. By applying the
above two equations to Eq. (7), we obtain the desired result.

Let x = A + βE[Sa]/(M − ρ). Then, the above equation is rewritten as

E[Y ] =
E[S2

a]
2E[Sa]

− νAE[S2]
2βE[Sa]

+
νE[S2]
2βE[Sa]

x +
(

B − AE[S2
a]

2E[Sa]
+

νA2E[S2]
2βE[Sa]

)
1
x

and its derivative with respect to x is given by

(8)
∂E[Y ]

∂x
=

νE[S2]
2βE[Sa]

−
(

B − AE[S2
a]

2E[Sa]
+

νA2E[S2]
2βE[Sa]

)
1
x2

.
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When x is increasing, the behavior of E[Y ] is determined according to whether
the coefficient of 1/x2 of the above equation is positive or not.

Proposition 3. If B−AE[S2
a]/(2E[Sa])+νA2E[S2]/(2βE[Sa]) ≤ 0, then E[Y ]

is strictly decreasing with respect to M . Otherwise, E[Y ] is strictly increasing
for M < m1 and strictly decreasing for M > m1, where

m1 = ρ +
βE[Sa]√

2βE[Sa]
νE[S2] B − βE[S2

a]
νE[S2]A + A2 − A

.

Proof. If the coefficient of 1/x2 in Eq. (8) is less than or equal to 0, then
E[Y ] is strictly increasing with respect to x. Since x is strictly decreasing
function of M , we can see that E[Y ] is strictly decreasing with respect to M .
For the other case, Eq. (8) says that E[Y ] is strictly decreasing function of x
for x < x∗ and E[Y ] is strictly increasing function of x for x > x∗, where x∗ is
the solution of

νE[S2]
2βE[Sa]

−
(

B − AE[S2
a]

2E[Sa]
+

νA2E[S2]
2βE[Sa]

)
1
x2

= 0.

Then, the remaining part of the proof immediately follows if we recall that x
is strictly decreasing function of M and its form is A + βE[Sa]/(M − ρ).

Usually, for a queueing system having uniform service rate, increasing service
rate results in decreasing of the stationary workload. However, we can see
from the above proposition that E[Y ] may increase when the service rate M
increases. This is due to the fact that the queueing system considered in this
paper has two service rates and high value of M makes increasing the proportion
of time when the system serves with rate 1.

6. Finding the optimal service rate M

In this section, we present how to find the optimal service rate M for the
optimization problem (3). To this end, we first observe the some values of E[Y ]
given by Table 1.

M E[Y ]

1 when ρ < 1 E[S] + νE[S2]/(2(1 − ρ))
ρ when ρ ≥ 1 ∞

∞ B/A

Table 1. The expected stationary workload for some values of M

Propositions 1 and 3 enable us to divide all cases into six. Let C = B −
AE[S2

a]/(2E[Sa])+νA2E[S2]/(2βE[Sa]). Then, the six cases are the followings:
Case 1: C ≤ 0 and ρ < 1.
Case 2: C ≤ 0, ρ ≥ 1 and βE[Sa]h′(ρ) − Ah(ρ) + βg(ρ) ≥ 0.
Case 3: C ≤ 0, ρ ≥ 1 and βE[Sa]h′(ρ) − Ah(ρ) + βg(ρ) < 0.
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cases M∗ (the optimal value of M)

Case 1 if w0 ≤ B/A, then there is no feasible solution.
if B/A < w0 < E[S] + νE[S2]/(2(1 − ρ)), then M∗ = m∗.
if E[S] + νE[S2]/(2(1 − ρ)) ≤ w0, then M∗ = 1.

Case 2 if w0 ≤ B/A, then there is no feasible solution.
if B/A < w0, then M∗ = m∗.

Case 3 if w0 ≤ B/A, then there is no feasible solution.
if B/A < w0 and m∗ ≥ m0, then M∗ = m∗.
if B/A < w0 and m∗ < m0, then M∗ = m0.

Case 4 if m1 ≤ 1 and w0 ≤ B/A, then there is no feasible solution.
if m1 ≤ 1 and B/A < w0 < E[S] + νE[S2]/(2(1 − ρ)), then M∗ = m∗.
if m1 ≤ 1 and E[S] + νE[S2]/(2(1 − ρ)) ≤ w0, then M∗ = 1.
if m1 > 1 and w0 ≤ min{B/A, E[S] + νE[S2]/(2(1 − ρ))},
then there is no feasible solution.
if 1 < m∗ < m1 and min{B/A, E[S] + νE[S2]/(2(1 − ρ))} < w0

< max{B/A, E[S] + νE[S2]/(2(1 − ρ))}, then M∗ = 1.
if 1 < m1 < m∗ and min{B/A, E[S] + νE[S2]/(2(1 − ρ))} < w0

< max{B/A, E[S] + νE[S2]/(2(1 − ρ))}, then M∗ = m∗.
1 < m1 and w0 ≥ max{B/A, E[S] + νE[S2]/(2(1 − ρ))}, then M∗ = 1.

Case 5 if w0 ≤ B/A, then there is no feasible solution.
if B/A < w0, then M∗ = m∗.

Case 6 if w0 ≤ B/A, then there is no feasible solution.
if B/A < w0 and m∗ ≥ m0, then M∗ = m∗.
if B/A < w0 and m∗ < m0, then M∗ = m0.

Table 2. The optimal solution of problem (3). In the table,
m∗ is the solution of E[Y ] = w0. If there are more than one
solution, then m∗ is the smallest one.

Case 4: C > 0 and ρ < 1.
Case 5: C > 0, ρ ≥ 1 and βE[Sa]h′(ρ) − Ah(ρ) + βg(ρ) ≥ 0.
Case 6: C > 0, ρ ≥ 1 and βE[Sa]h′(ρ) − Ah(ρ) + βg(ρ) < 0.

In cases 1 and 2, Propositions 1 and 3 say that E[Y ] is strictly decreasing
and C(M) is strictly increasing. It is the optimal M such that E[Y ] = w0 if
exists. From Table 1, we can see that the equation E[Y ] = w0 has solution
when B/A < w0 ≤ E[S] + νE[S2]/(2(1 − ρ)) for ρ < 1 and B/A < w0 for
ρ ≥ 1. When w0 ≤ B/A, there is no M satisfying E[Y ] ≤ w0. When w0 >
E[S] + νE[S2]/(2(1 − ρ)) and ρ < 1, then M = 1 is the optimal service rate.

In case 3, Propositions 1 and 3 say that E[Y ] is strictly decreasing and that
C(M) is decreasing for M < m0 and increasing for M > m0. Let m∗ be the
unique solution of E[Y ] = w0 if exists. Then, it is clear that M = m∗ is the
optimal service rate if m∗ ≥ m0. Otherwise, M = m0 is the optimal service
rate. Since the existence of such M with which E[Y ] = w0 depends only on
the value of E[Y ], the condition of the existence is the same the above. If
w0 ≤ B/A, there is no M satisfying E[Y ] ≤ w0.
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In case 4, Propositions 1 and 3 say that C(M) is strictly increasing and
E[Y ] is strictly increasing for M < m1 and strictly decreasing for M > m1. If
m1 ≤ 1, then E[Y ] is strictly decreasing for M ∈ [1,∞). Then, C(M) and E[Y ]
show the same behavior as in case 1 for M ∈ [1,∞) because we assume M ≥ 1.
Thus, we can find the optimal M in the same manner as in case 1. Now, we
consider the case that m1 > 1. Let m∗ be the smallest M with which E[Y ] = w0

if exists. If m∗ ≤ m1, then 1 is the optimal solution because E[Y ] is an
increasing function of M for M ∈ [1,m∗). If m∗ > m1, then m∗ is the optimal
solution because E[Y ] is a decreasing function of M for M > m∗. The condition
of the existence of M with which E[Y ] = w0 can be deduced from Table 1.
When w0 has a value between B/A and E[S]+νE[S2]/(2(1−ρ)), the equation
E[Y ] = w0 has one solution. If w0 > max(E[S] + νE[S2]/(2(1 − ρ)), B/A),
then 1 is the optimal solution. If w0 < min(E[S] + νE[S2]/(2(1 − ρ)), B/A),
then there is no M such that E[Y ] ≤ w0.

In case 5, C(M) and E[Y ] show the same behavior as in Case 4. From
Table 1, we can see that E[Y ] goes to ∞ as M goes to ρ, which implies that
m1 < ρ. Then, E[Y ] is strictly decreasing for M ∈ (ρ,∞). Then, C(M) and
E[Y ] show the same behavior as in case 2 for M ∈ (ρ,∞). Thus, we can find
the optimal M in the same manner as in case 2 because we assume M > ρ.

In case 6, Propositions 1 and 3 say that E[Y ] is strictly decreasing for M <
m1 and strictly increasing for M > m1, and say that C(M) is strictly decreasing
for M < m0 and strictly increasing for M > m0. In case 6, we assume ρ >
1. Then, by the same reason as in case 5, E[Y ] is strictly decreasing for
M ∈ (ρ,∞). Then, C(M) and E[Y ] show the same behavior as in case 3 for
M ∈ (ρ,∞). Thus, we can find the optimal M in the same manner as in case 3
because we assume M > ρ. Now, the optimal values in all case are given in
Table 2.
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