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LOCAL CONVERGENCE OF THE SECANT METHOD
UPPER HÖLDER CONTINUOUS DIVIDED DIFFERENCES

Ioannis K. Argyros

Abstract. The semilocal convergence of the secant method under Hölder
continuous divided differences in a Banach space setting for solving non-

linear equations has been examined by us in [3]. The local convergence

was recently examined in [4]. Motivated by optimization considerations
and using the same hypotheses but more precise estimates than in [4] we

provide a local convergence analysis with the following advantages: larger

radius of convergence and finer error estimates on the distances involved.
The results can be used for projection methods, to develop the cheap-

est possible mesh refinement strategies and to solve equations involving

autonomous differential equations [1], [4], [7], [8].

1. Introduction

In this study, we are concerned with the problem of approximating locally
unique solution x∗ of the equation

(1) F (x) = 0

where F is a Fréchet-differentiable operator defined on a convex subset D of a
Banach space Y. The secant method

(2) xn+1 = xn − [xn−1, xn;F ]−1F (xn), ∀n ≥ 0, x−1, x0 ∈ D

has been used by several authors to generate a sequence {xn} approximating
x∗ [2], [4], [8]. Here [x, y;F ] ∈ L(X,Y ) the space of bounded linear operators
from X into Y is called a divided difference of first order for the operator F at
the points x and y (x 6= y) if the following holds:

(3) [x, y;F ](x− y) = F (x)− F (y).

A survey on local as well as semilocal convergence theorems for method (2)
can be found in [3], [5] and the references there.
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In particular in [3] we provided a semilocal convergence we analysis for
method (2) under the general condition

(4)
∥∥[x−1, x0, F ]−1([x, y;F ]− [v, w;F ])

∥∥ ≤ ` ‖x− v‖p + ` ‖y − w‖p

for all x, y, v, w ∈ D and some p ∈ (0, 1] and `, ` ≥ 0.
Hongwin and Qingbiao [6] used the special case of condition (4)

(5)
∥∥F ′(x∗)−1([x, y;F ]− F ′(z))

∥∥ ≤ `(‖x− z‖p + ‖y − z‖p)

to provide a local convergence analysis of method (2).
In our study motivated by optimization considerations we use the combina-

tion of (5) with condition

(6)
∥∥F ′(x∗)−1([x, y;F ]− F ′(x∗))

∥∥ ≤ `0 ‖(x− x∗‖p + ‖y − x∗‖p)

to provide a new local convergence analysis of method (2) with the following
advantages over the corresponding one in [6] for `0 < `:

(a) a larger radius of convergence,
(b) finer error estimates on the distances ‖xn − x∗‖ .

In view of (5) and (6),

(7) `0 ≤ `

holds in general and `
`0

can be arbitrarily large [4], [5]. Note also that the
above stated advantages hold under the same hypotheses and computational
cost since in practice the evaluation of ` requires includes the evaluation of `0.

2. Local convergence analysis of secant method (2)

We can show the main local convergence results for secant method (2):

Theorem 1. Let x∗ ∈ D be a simple zero of F in the sense that F ′(x∗)−1 ∈
L(Y,X).

Under conditions (5), (6), further, assume

(8) U = U
(
x∗,
( 1
`0

) 1
p
)

=
{
x ∈ X ‖x− x∗‖ <

( 1
`0

) 1
p

}
⊆ D.

Then sequence {xn} (n ≥ 0) generated by secant method (2) converges to the
unique solution x∗ ∈ U provided the initial points x−1, x0 are in smaller ball
U0 = U (x∗, τ) , where

(9) r =
{

1 + p

2[`0(1 + p) + `2p]

} 1
p

.

Moreover, the speed of convergence of the secant method (2) is determined by

(10) ‖xn − x∗‖ ≤ r
[

1
r

(max(‖x−1 − x∗‖ , ‖x0 − x∗‖))
]α
,
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where,

(11) α = (p+ 1)[
n+1

2 ]

and [y] denotes the largest integer that is not larger than y.

Proof. We shall first show that for all u, v ∈ U0 linear operator [u, v;F ] is
invertible on U0. Indeed using (6) we obtain

(12)

∥∥F ′(x∗)−1([u, v;F ]− F ′(x∗))
∥∥

≤ `0(‖u− x∗‖p + ‖v − x∗‖p) < `0r
p < 1,

by the choice of r. It follows from (12), and the Banach Lemma on invertible
operators [5] that [u, v;F ′]−1F ′(x∗) exists and

(13)
∥∥[u, v;F ]−1F ′(x∗)

∥∥ ≤ 1
1− `0(‖u− x∗‖p + ‖v − x∗‖p)

By hypothesis x−1, x0 are in U. Let us assume xk ∈ U for all integer values
k ≤ n. We shall show xk+1 ∈ U.

Using (2), (3), (5), (6) (for u = xn−1, v = xn), we can obtain in turn:

(14)

‖xn+1 − x∗‖
=
∥∥xn − x∗ − [xn−1, xn;F ]−1(F (xn)− F (x∗))

∥∥
≤
∥∥[xn−1, xn;F ]−1F ′(x∗)

∥∥
×
∥∥∥∥∫ 1

0

F ′(x∗)−1([xn−1, xn;F ]− F ′(x∗ + t(xn − x∗))
∥∥∥∥ dt ‖xn − x∗‖

≤ ‖xn − x∗‖
1− `0(‖xn−1 − x∗‖p + ‖xn − x∗‖p)

× `
[∫ 1

0

(‖xn−1 − txn − (1− t)x∗‖p + ‖xn − txn − (1− t)x∗‖p dt
]

≤ ‖xn − x∗‖
1− `0(‖xn−1 − x∗‖p + ‖xn − x∗‖p)

× `
[∫ 1

0

(t ‖xn−1 − xn‖+ (1− t) ‖xn−1 − x∗‖)pdt

+
∫ 1

0

(1− t)p ‖xn − x∗‖p dt
]

<
`r

1− 2`0rp

∫ 1

0

[(2rt+ (1− t)r)p + (1− t)prp]dt

=
`r1+p

1− 2`0rp

∫ 1

0

[(1 + t)p + (1− t)p]dt

=
`r1+p

1− 2`0rp
× 21+p

1 + p
= r,

by the choice of r. It follows that xn+1 ∈ U0 and the induction is completed.
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Using (14) and (9), we get

(15) ‖xn+1 − x∗‖ < ‖xn − x∗‖ ,

from which it follows that lim
n→∞

xn = x∗. It also follows from (14) that, for all
n ≥ 0,

(16)

‖xn+1 − x∗‖

≤ `[(‖xn−1 − x∗‖+ ‖xn − x∗‖)1+p − ‖xn−1 − x∗‖1+p + ‖xn − x∗‖1+p]
(1 + p)(1− 2`0rp)

.

To show uniqueness, let y∗ be a solution of equation (1) in

U
(

(x∗
( 1
`0

) 1
p
)
.

Define the linear operator L = [y∗, x∗; f ]. Using (6), we obtain

(17)
∥∥F ′(x∗)−1(L− F ′(x∗))

∥∥ ≤ `0 ‖x∗ − y∗‖p < 1.

In view of (17) and the Banach lemma on invertible operators, we deduce
operator L is invertible. By (3), we can write

(18) L(y∗ − x∗) = F (y∗)− F (x∗)

and we get x∗ = y∗ by the invertibility of linear operator L.
The proof will end if we show estimate (10). Define

(19) γ =
1
2

(
`0(1 + p) + `2p

1 + p

) 1
p

and

(20) εn = γ ‖xn − x∗‖ .

With the above definitions the rest of the proof is identical to the corresponding
one in [6, p. 288]. In order to avoid repetitions we refer the reader to [6] for the
rest of the proof. That completes the proof. �

Remark 2. If `0 = `, then our Theorem 1 reduces to Theorem 1 in [6].
Otherwise, it is an improvement. Indeed, for the radius rHQ obtained in [6]
simply, set `0 = ` in (9). It then follows that, if `0 = `

(21) rHQ < r

and

(22) γ < γHQ,

where

(23) γHQ =
1
2

[
(1 + p+ 2p)`

1 + p

] 1
P

.



THE SECANT METHOD UPPER HÖLDER CONTINUOUS DIVIDED DIFFERENCES 25

Estimates (21) and (23) justify the claims made in the introduction of this
study. The results obtained here are important in computational mathematics
since as noted in [1], [4], [7], [8], the local convergence analysis can be used
for projection methods and to develop the cheapest possible mesh refinement
strategies. Finally note that these results can be used to solve equations when
operator F satisfies autonomous differential equations [4] of the form where P
is a continuous given operator. Since F ′(x∗) = P (F (x∗)) = P (0) we can use
the results without actually knowing x∗.

We complete this study with a numerical example.

Example 3. Let X = Y = R, p = 1, U = D = U(0, 1), x∗ = 0, and define
functions f on D by

(24) f(x) = ex − 1.

Proof. Using (5), (6), and (24) for [x, y;F ] = f(x)−f(y)
x−y , (x 6= y), we obtain

` = e
2 >

e−1
2 = `0. That is (7) holds as a strict inequality. Moreover, using (9),

(22) and (23), we obtain

rHQ =
1
4e

= .09196986 < r =
1

2(2e− 1)
= .112699836

and
γ =

2e− 1
2

= 2.218281828 < γHQ = e = 2.718281828.

Clearly, the numerical example justifies the theoretical results. Hence the ad-
vantages of our approach as stated above follow. �
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