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LOCALIZATION OF AZUKAWA PSEUDOMETRIC

Sunhong Lee

Abstract. We prove a localization theorem of Azukawa pseudometric at
a local plurisubharmonic peak point of a domain in the complex Euclidean

space.

1. Introduction

The localization of invariant metrics is one of the important issues in the
study of their boundary behavior.

Graham [5] first studied the localization of the Kobayashi metric of a smooth
strongly pseudoconvex domain. In order to get the result, he explored a global
peak function at each boundary point of a domain. In 1987, Forstneric and
Rosay [4] obtained a quantitive estimate about the localiztion of this metric at
a local peak point of a bounded domain under some growth condition for the
peak function.

Yu [9] studied the localization of the higher order Kobayashi metrics at a
boundary point of a taut domain whose boundary does not contain nontrivial
varieties through this point. In order to study the localization of the singular
Kobayashi metric, Nikolov [6] proved the uniform localization of the higher
order Kobayashi metrics at a local peak point of a bounded domain. Nikolov
[7] extended this result for an arbitrary domain in Cn. Coman [3] studied the
boundary behavior of the Green function of a bounded domain, which also
gives the localization of the Azukawa metric.

In this paper, we first prove a plurisubhamonic version of Schwarz lemma,
and show a localization theorem of Azukawa pseudometric at a local plurisub-
hamonic peak point of a domain in Cn.

2. Localization

We begin with a subharmonic vesion of the Schwarz lemma. Let ∆ = {z ∈
C : |z| < 1} be the unit disc in the complex plane.

Theorem 1. Let f : ∆ → [0, 1) be a function such that
(a) log f(z) is subharmonic, and
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(b) lim supz→0
f(z)
|z| < ∞.

Then we have f(z) ≤ |z|. Moreover if f(z) = |z| for some z ̸= 0, then f(z) =
|z|.

Proof. Since log f(z)/|z| = log f(z) − log |z| is subharmonic, so is f(z)/|z|.
Since f(z)/|z| is subharmonic and since lim sup|z|→1 f(z)/|z| ≤ 1, we have
f(z)/|z| ≤ 1 by Maximum principle. In other words, we have f(z) ≤ |z| for all
z ∈ ∆. If f(z) = |z| for some z ̸= 0, then f(z) = |z| by the maximal principal
for f(z)/|z|. ¤

We can see another version of the Schwarz lemma in [8].

Let G be a domain in Cn. For a ∈ G, let KG(a) be the family of functions
u : G → [0, 1) such that

(1) log u is plurisubharmonic, and
(2) there exist M, r > 0 such that u(z) ≤ M · |z − a| for z ∈ B(a; r) ⊂ G

and u(z)/|z − a| ≤ O(1) as z → a.
Then the Azukawa pseudometric FG [1] on G is defined by

FG(a; X) = sup
{

lim sup
λ→0

u(a + λX)
|λ|

: u(z) ∈ KG(a)
}

.

We know that F is a contracting family of pseudometrics, in other words,
(1) for the unit disc ∆, F∆ is the Pioncaré metric, and
(2) for every holomorphic function f : G → Ω, FG(a; X) ≥ FΩ(f(a); df |a(X)).

We now consider the maximal function

gG(z, a) := sup{u(z) : u(z) ∈ KG(a)}.
This function is closely related to the Azukawa pseudometric.

Lemma 1. ([1]) Let G be a domain in Cn. Let a ∈ G, X ∈ Cn. Then we have

FG(a; X) = lim sup
λ→0

gG(a + λX, a)
|λ|

.

Proof. Let gG(·, a)∗ be the upper semi-continuous regulation of gG(·, a). Since,
for u ∈ KG(a),

u(z; a) ≤ 1
A(∂B(z; r))

∫
∂B(z;r)

u(z + w) dw

≤ 1
A(∂B(z; r))

∫
∂B(z;r)

g(z + w, a) dw,

we have
g(z, a) ≤ 1

A(∂B(z; r))

∫
∂B(z;r)

g(z + w, a) dw,

where A(∂B(z; r)) is the area of ∂B(z; r). This implies that log g(·, a)∗ is pluri-
subhamonic.
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For z ∈ B(a; r) ⊂ G, since gG(z, a) ≤ 1
r∥z−a∥, we have gG(z, a)∗ ≤ 1

r∥z−a∥.
This implies that there exists a postive number r such that g(z, a)∗ ≤ 1

r∥z−a∥
for all z ∈ B(a, r) ⊂ G. Then since log g(·, a)∗ is pluri-subhamonic, we obtain
that gG(z, a)∗ ∈ KG(a). From the definition of gG(z, a) we can see that

gG(z, a)∗ = gG(z, a) ∈ KG(a).

Therefore, we have the result. ¤

Berteloot [2] showed localization for Sibony pseudometric [8]. Here we prefer
Azukawa pseudometric in the family of plurisubhamornic functions, and present
the localization theorem of this pseudometric.

Theorem 2. Let Ω be a domain in Rn and p ∈ ∂Ω. Let σ : Vp → R be a local
continuous plurisubharmonic peak function at p. Then for any neiborhood U of
p, there exists a neiborhood W of p such that f(∆r) ⊂ U for every holomorphic
fuction f : ∆ → Ω with f(0) ∈ W .

Proof. Choose constants r and R with 0 < r < R and B(p; R) ⊂⊂ Vp. By
choosing a constant k > 0 such that σ(z) ≤ −k for all z ∈ Ω ∩ {|z − p| = r},
we have σ(z) · 2R2/k ≤ −2R2. Thus we can assume that σ(z) ≤ −2R2 for
z ∈ Ω ∩ {|z − p| = r}. Define σ̃ : Ω → R by

σ̃(z) =

{
max(σ(z) + |z − p|2 − R2,−2R2), on Ω ∩ {|z − p| < r},
−2R2, on Ω ∩ {|z − p| ≥ r}.

Then σ̃ is a negative continuous p.s.h. function. Near p, σ̃ is strictly p.s.h.
Choose a > 0 such that σ̃(z) = σ(z)+ |z−p|2−R2 for all z ∈ Ω∩{|z−p| < 2a}.

Now let θ : [0,∞) → R be a smooth, nondecreasing function such that

θ(x) =

{
x, if x ≤ 1

2 ,
1, if x ≥ 3

4 .

Let z0 ∈ Ω ∩ {|z − p| < a}. Let s > 0 with B(z0; s) ⊂ {|z − z0| < a}. For any
λ > 0, define

Ψλ(z) =

{
θ
(

|z−z0|
s

)
exp(λσ̃(z)), for z ∈ Ω ∩ {|z − z0| < s},

exp(λσ̃(z)), for z ∈ Ω\{|z − z0| < s}.

In a neighborhood of Ω\B(z0; s), log Ψλ(z) = λσ̃(z) is plurisubharmonic.
Also in a neighborhood of B(z0; s/2), log Ψλ(z) = log |z−z0|

s +λσ̃(z) is plurisub-
harmonic. On B(z0; s), we have

Ψλ(z) = θ

(
|z − z0|

s

)
exp(λσ̃(z)).

Let h(x) = log θ(x). Then, by considering the eigenvalues of the Levi form of
h(|z|2), we know that there exists A > 0 such that

⟨Lh(|z|2)X,X⟩ ≥ −A|X|2
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for all z ∈ B(0; 1)\{0} and X ∈ Cn. Then we have

⟨L log Ψλ(z)X, X⟩ ≥
(
−A

s2
+ cλ

)
|X|2

Now by choosing λ = A/(cs2), log Ψλ(z) is plurisubharmonic in a neighborhood
of

B(z0; s)\B(z; s/2).
Therefore there exists λ > 0 such that Ψλ ∈ KΩ(z0). Since

lim
λ→0

|λX|
s · exp

(
A

cs2 σ̃(z0 + λX)
)

|λ|
=

1
s
· exp

(
A

cs2
σ̃(z0)

)
|X|

we have

FΩ(z0; X) ≥ 1
s
· exp

(
A

cs2
σ̃(z0)

)
|X|.

The proof is done. ¤

References

[1] Kazuo Azukawa, The invariant pseudometric related to negative plurisubharmonic func-

tions, Kodai Math. J. 10 (1987), no. 1, 83–92.
[2] François Berteloot, Characterization of models in C2 by their automorphism groups,

Internat. J. Math. 5 (1994), no. 5, 619–634.
[3] Dan Coman, Boundary behavior of the pluricomplex Green function, Ark. Mat. 36 (1998),

no. 2, 341–353.
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