LOCALIZATION OF AZUKAWA PSEUDOMETRIC

SUNHONG LEE

ABSTRACT. We prove a localization theorem of Azukawa pseudometric at a local plurisubharmonic peak point of a domain in the complex Euclidean space.

1. Introduction

The localization of invariant metrics is one of the important issues in the study of their boundary behavior.

Graham [5] first studied the localization of the Kobayashi metric of a smooth strongly pseudoconvex domain. In order to get the result, he explored a global peak function at each boundary point of a domain. In 1987, Forstneric and Rosay [4] obtained a quantitive estimate about the localization of this metric at a local peak point of a bounded domain under some growth condition for the peak function.

Yu [9] studied the localization of the higher order Kobayashi metrics at a boundary point of a taut domain whose boundary does not contain nontrivial varieties through this point. In order to study the localization of the singular Kobayashi metric, Nikolov [6] proved the uniform localization of the higher order Kobayashi metrics at a local peak point of a bounded domain. Nikolov [7] extended this result for an arbitrary domain in \mathbb{C}^n . Coman [3] studied the boundary behavior of the Green function of a bounded domain, which also gives the localization of the Azukawa metric.

In this paper, we first prove a plurisubhamonic version of Schwarz lemma, and show a localization theorem of Azukawa pseudometric at a local plurisubhamonic peak point of a domain in \mathbb{C}^n .

2. Localization

We begin with a subharmonic vesion of the Schwarz lemma. Let $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disc in the complex plane.

Theorem 1. Let $f: \Delta \to [0,1)$ be a function such that

(a) $\log f(z)$ is subharmonic, and

Received August 8, 2007.

 ${\it Key\ words\ and\ phrases.}\ {\it Kobayashi\ pseudometic,\ localization,\ plurisubhamonic\ peak\ point.}$

©2008 The Busan Gyeongnam Mathematical Society 7

 $^{2000\} Mathematics\ Subject\ Classification.\ 32F45,\ 32Q45.$

SUNHONG LEE

(b) $\limsup_{z\to 0} \frac{f(z)}{|z|} < \infty$.

Then we have $f(z) \leq |z|$. Moreover if f(z) = |z| for some $z \neq 0$, then f(z) = |z|.

Proof. Since $\log f(z)/|z| = \log f(z) - \log |z|$ is subharmonic, so is f(z)/|z|. Since f(z)/|z| is subharmonic and since $\limsup_{|z|\to 1} f(z)/|z| \le 1$, we have $f(z)/|z| \le 1$ by Maximum principle. In other words, we have $f(z) \le |z|$ for all $z \in \Delta$. If f(z) = |z| for some $z \ne 0$, then f(z) = |z| by the maximal principal for f(z)/|z|.

We can see another version of the Schwarz lemma in [8].

Let G be a domain in \mathbb{C}^n . For $a \in G$, let $K_G(a)$ be the family of functions $u: G \to [0, 1)$ such that

- (1) $\log u$ is plurisubharmonic, and
- (2) there exist M, r > 0 such that $u(z) \le M \cdot |z a|$ for $z \in B(a; r) \subset G$ and $u(z)/|z - a| \le O(1)$ as $z \to a$.

Then the Azukawa pseudometric F_G [1] on G is defined by

$$F_G(a;X) = \sup\left\{\limsup_{\lambda \to 0} \frac{u(a+\lambda X)}{|\lambda|} : u(z) \in K_G(a)\right\}.$$

We know that F is a contracting family of pseudometrics, in other words,

- (1) for the unit disc Δ , F_{Δ} is the Pioncaré metric, and
- (2) for every holomorphic function $f: G \to \Omega$, $F_G(a; X) \ge F_\Omega(f(a); df|_a(X))$.

We now consider the maximal function

$$g_G(z,a) := \sup\{u(z) : u(z) \in K_G(a)\}.$$

This function is closely related to the Azukawa pseudometric.

Lemma 1. ([1]) Let G be a domain in \mathbb{C}^n . Let $a \in G$, $X \in \mathbb{C}^n$. Then we have

$$F_G(a; X) = \limsup_{\lambda \to 0} \frac{g_G(a + \lambda X, a)}{|\lambda|}$$

Proof. Let $g_G(\cdot, a)^*$ be the upper semi-continuous regulation of $g_G(\cdot, a)$. Since, for $u \in K_G(a)$,

$$\begin{split} u(z;a) &\leq \frac{1}{A(\partial B(z;r))} \int_{\partial B(z;r)} u(z+w) \, dw \\ &\leq \frac{1}{A(\partial B(z;r))} \int_{\partial B(z;r)} g(z+w,a) \, dw \end{split}$$

we have

$$g(z,a) \leq \frac{1}{A(\partial B(z;r))} \int_{\partial B(z;r)} g(z+w,a) \, dw_{z}$$

where $A(\partial B(z; r))$ is the area of $\partial B(z; r)$. This implies that $\log g(\cdot, a)^*$ is plurisubhamonic.

8

For $z \in B(a; r) \subset G$, since $g_G(z, a) \leq \frac{1}{r} ||z-a||$, we have $g_G(z, a)^* \leq \frac{1}{r} ||z-a||$. This implies that there exists a postive number r such that $g(z, a)^* \leq \frac{1}{r} ||z-a||$ for all $z \in B(a, r) \subset G$. Then since $\log g(\cdot, a)^*$ is pluri-subhamonic, we obtain that $g_G(z, a)^* \in K_G(a)$. From the definition of $g_G(z, a)$ we can see that

$$g_G(z,a)^* = g_G(z,a) \in K_G(a).$$

Therefore, we have the result.

Berteloot [2] showed localization for Sibony pseudometric [8]. Here we prefer Azukawa pseudometric in the family of plurisubhamornic functions, and present the localization theorem of this pseudometric.

Theorem 2. Let Ω be a domain in \mathbb{R}^n and $p \in \partial \Omega$. Let $\sigma: V_p \to \mathbb{R}$ be a local continuous plurisubharmonic peak function at p. Then for any neiborhood U of p, there exists a neiborhood W of p such that $f(\Delta_r) \subset U$ for every holomorphic function $f: \Delta \to \Omega$ with $f(0) \in W$.

Proof. Choose constants r and R with 0 < r < R and $B(p; R) \subset V_p$. By choosing a constant k > 0 such that $\sigma(z) \leq -k$ for all $z \in \overline{\Omega} \cap \{|z - p| = r\}$, we have $\sigma(z) \cdot 2R^2/k \leq -2R^2$. Thus we can assume that $\sigma(z) \leq -2R^2$ for $z \in \overline{\Omega} \cap \{|z - p| = r\}$. Define $\tilde{\sigma} : \Omega \to \mathbb{R}$ by

$$\tilde{\sigma}(z) = \begin{cases} \max(\sigma(z) + |z - p|^2 - R^2, -2R^2), & \text{on } \overline{\Omega} \cap \{|z - p| < r\}, \\ -2R^2, & \text{on } \overline{\Omega} \cap \{|z - p| \ge r\}. \end{cases}$$

Then $\tilde{\sigma}$ is a negative continuous p.s.h. function. Near p, $\tilde{\sigma}$ is strictly p.s.h. Choose a > 0 such that $\tilde{\sigma}(z) = \sigma(z) + |z - p|^2 - R^2$ for all $z \in \overline{\Omega} \cap \{|z - p| < 2a\}$.

Now let $\theta \colon [0,\infty) \to \mathbb{R}$ be a smooth, nondecreasing function such that

$$\theta(x) = \begin{cases} x, & \text{if } x \le \frac{1}{2}, \\ 1, & \text{if } x \ge \frac{3}{4}. \end{cases}$$

Let $z_0 \in \Omega \cap \{|z-p| < a\}$. Let s > 0 with $B(z_0; s) \subset \{|z-z_0| < a\}$. For any $\lambda > 0$, define

$$\Psi_{\lambda}(z) = \begin{cases} \theta\left(\frac{|z-z_0|}{s}\right) \exp(\lambda\tilde{\sigma}(z)), & \text{for } z \in \Omega \cap \{|z-z_0| < s\},\\ \exp(\lambda\tilde{\sigma}(z)), & \text{for } z \in \Omega \setminus \{|z-z_0| < s\}. \end{cases}$$

In a neighborhood of $\Omega \setminus B(z_0; s)$, $\log \Psi_{\lambda}(z) = \lambda \tilde{\sigma}(z)$ is plurisubharmonic. Also in a neighborhood of $\overline{B(z_0; s/2)}$, $\log \Psi_{\lambda}(z) = \log \frac{|z-z_0|}{s} + \lambda \tilde{\sigma}(z)$ is plurisubharmonic. On $B(z_0; s)$, we have

$$\Psi_{\lambda}(z) = \theta\left(\frac{|z-z_0|}{s}\right) \exp(\lambda \tilde{\sigma}(z)).$$

Let $h(x) = \log \theta(x)$. Then, by considering the eigenvalues of the Levi form of $h(|z|^2)$, we know that there exists A > 0 such that

$$\langle \mathcal{L}h(|z|^2)X, X \rangle \ge -A|X|^2$$

for all $z \in B(0;1) \setminus \{0\}$ and $X \in \mathbb{C}^n$. Then we have

$$\langle \mathcal{L} \log \Psi_{\lambda}(z) X, X \rangle \ge \left(-\frac{A}{s^2} + c\lambda \right) |X|^2$$

Now by choosing $\lambda = A/(cs^2)$, log $\Psi_{\lambda}(z)$ is plurisubharmonic in a neighborhood of

$$B(z_0;s)\setminus B(z;s/2).$$

Therefore there exists $\lambda > 0$ such that $\Psi_{\lambda} \in K_{\Omega}(z_0)$. Since

$$\lim_{\lambda \to 0} \frac{\frac{|\lambda X|}{s} \cdot \exp\left(\frac{A}{cs^2} \tilde{\sigma}(z_0 + \lambda X)\right)}{|\lambda|} = \frac{1}{s} \cdot \exp\left(\frac{A}{cs^2} \tilde{\sigma}(z_0)\right) |X|$$

we have

$$F_{\Omega}(z_0; X) \ge \frac{1}{s} \cdot \exp\left(\frac{A}{cs^2} \tilde{\sigma}(z_0)\right) |X|.$$

The proof is done.

References

- Kazuo Azukawa, The invariant pseudometric related to negative plurisubharmonic functions, Kodai Math. J. 10 (1987), no. 1, 83–92.
- [2] François Berteloot, Characterization of models in C² by their automorphism groups, Internat. J. Math. 5 (1994), no. 5, 619–634.
- [3] Dan Coman, Boundary behavior of the pluricomplex Green function, Ark. Mat. 36 (1998), no. 2, 341–353.
- [4] Franc Forstnerič and Jean-Pierre Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987), no. 2, 239–252.
- [5] Ian Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in Cⁿ with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219–240.
- [6] N. Nikolov, Stability and boundary behavior of the Kobayashi metrics, Acta Math. Hungar. 90 (2001), no. 4, 283–291.
- [7] Nikolai Nikolov, Localization of invariant metrics, Arch. Math. (Basel) 79 (2002), no. 1, 67–73.
- [8] Nessim Sibony, A class of hyperbolic manifolds, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979), Princeton Univ. Press, Princeton, N.J., 1981, pp. 357–372.
- [9] Ji Ye Yu, Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains, Trans. Amer. Math. Soc. 347 (1995), no. 2, 587–614.

Department of Mathematics and RINS, Gyeongsang National University, Jinju 60-701, The Republic of Korea

E-mail address: sunhong@gnu.ac.kr

10