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SENSITIVITY ANALYSIS OF SOLUTIONS FOR
A SYSTEM OF PARAMETRIC GENERAL

QUASIVARIATIONAL-LIKE INEQUALITIES

Yan Hao and Shin Min Kang∗

Abstract. In this paper, we introduce and study a new class of sys-

tem of parametric general quasivariational-like inequalities. Using η-

subdifferential and η-proximal mappings of proper functionals in Hilbert
spaces, we prove the equivalence between the system of parametric general

quasivariational-like inequalities and a fixed point problem and construct

two iterative algorithms. A few existence and uniqueness results as well
as the sensitivity analysis of solutions are also established for the system

of parametric general quasivariational-like inequalities, and some conver-

gence results of iterative sequence generated by the algorithms are proved.
Our results extend a few known results in the literature.

1. Introduction and preliminaries

Variational inequality theory has become a very powerful tool in pure and
applied mathematics. In 1996, Zhu and Marcotte introduced and investigated
a class of system of variational inequalities in Rn. Afterwards, Liu, Hao, Lee
and Kang [9], Nie, Liu, Kim and Kang [12], Verma [13], and Wu, Liu, Shim
and Kang [15] studied the approximation and solvability of a few kinds of vari-
ous systems of variational inequalities in Hilbert spaces. Recently, Dafermos [3]
studied the sensitivity property of solutions of a parametric variational inequal-
ity in Rn. Afterwards, using the ideas of Dafermos, many researchers including
Agarwal, Cho and Huang [1], Liu, Debnath, Kang and Ume [8], Liu, Wang,
Kang and Ume [11], Yen and Lee [16] and others have established the sensitiv-
ity analysis of solutions for various types of variational inequalities and quasi-
variational inclusions in Hilbert spaces, respectively. At the same time, Ding
and Luo [4] studied the quasivariational-like inequalities with η-subdifferential
mapping in Hilbert spaces.

Inspired and motivated by the results [1, 4, 9-11], in this paper, we introduce
and study a new class of system of parametric general quasivariational-like

Received August 30, 2007.
2000 Mathematics Subject Classification. 47J20, 49J40.
Key words and phrases. Sensitivity analysis, system of parametric general quasivari-

ational-like inequality, η-subdifferential mapping, algorithm.
∗ Corresponding author.

c©2008 The Busan Gyeongnam Mathematical Society

177



178 YAN HAO AND SHIN MIN KANG

inequalities. We show its equivalence with a fixed point problem and establish
the existence and sensitivity analysis of solutions for the system of parametric
general quasivariational-like inequalities involving strongly monotone, Lipschitz
continuous and η-subdifferential mappings and some convergence results of
iterative sequence generated by the algorithm are proved. Our results extend
and improve the corresponding results in [4, 7, 9-11, 14, 17].

2. Preliminaries

Let H be a real Hilbert space with a norm ‖ · ‖ and inner product 〈·, ·〉,
respectively. Let P be a nonempty open subset of H in which the parameter λ
takes values.

Definition 2.1. Let A, B, C : H → H and N : H × H × H × P → H be
mappings. The mapping N is said to be

(1) Lipschitz continuous in the first argument if there exists a constant a > 0
such that

‖N(x, u, v, λ)−N(y, u, v, λ)‖ ≤ a‖x− y‖
for all x, y, u, v ∈ H and λ ∈ P ;

(2) strongly monotone with respect to A in the first argument if there exists
a constant r > 0 such that

〈N(Ax, u, v, λ)−N(Ay, u, v, λ), x− y〉 ≥ r‖x− y‖2

for all x, y, u, v ∈ H and λ ∈ P ;
(3) relaxed monotone with respect to B in the second argument if there

exists a constant s > 0 such that

〈N(u,Bx, v, λ)−N(u,By, v, λ), x− y〉 ≥ −s‖x− y‖2

for all x, y, u, v ∈ H and λ ∈ P .

In the similar way, we can define the Lipschitz continuity of N in the second
and third arguments, respectively.

Definition 2.2. ([4]) A functional f : H × H → R ∪ {+∞} is said to be 0-
diagonally quasi-concave (in short, 0-DQCV) in x if for any finite set {x1, · · · , xn}
⊂ H, and for any y =

∑n
i=1 lixi with li ≥ 0 and

∑n
i=1 li = 1,min1≤i≤n f(xi, y) ≤

0.

Definition 2.3. ([4]) Let η : H ×H → H be a mapping. A proper functional
φ : H → R ∪ {+∞} is said to be η-subdifferentiable at a point x ∈ H if there
exists a point f∗ ∈ H such that

φ(y)− φ(x) ≥ 〈f∗, η(y, x)〉, ∀y ∈ H,
where f∗ is called a η-subgradient of φ at x. The set of all η-subgradient of φ
at x is denoted by ∆φ(x). The mapping ∆φ : H → 2H defined by

(2.1) ∆φ(x) = {f∗ ∈ H : φ(y)− φ(x) ≥ 〈f∗, η(y, x)〉,∀y ∈ H}, x ∈ H
is said to be η-subdifferential of φ.
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Definition 2.4. ([4]) Let φ : H → R ∪ {+∞} be a proper functional. For any
given x ∈ H and ρ > 0, if there exist a mapping η : H ×H → H and a unique
point u ∈ H such that

〈u− x, η(y, u)〉 ≥ ρφ(u)− ρφ(y), ∀y ∈ H,
then the mapping x 7→ u, denoted by J∆ϕ

ρ (x), is said to be η-proximal mapping
of φ.

By (2.1) and the definition of J∆ϕ
ρ (x), we have x − u ∈ ρ∆φ(u). It follows

that
J∆ϕ
ρ (x) = (I + ρ∆φ)−1(x),

where I is the identity mapping on H.

Let A,B,C : H → H, N : H ×H ×H × P → H and η : H ×H × P → H
be mappings and φ : H × P → R ∪ {+∞} be a proper functional such that
φ : H × P → H is lower semicontinuous and η-subdifferentiable on H. Let ρ
and β be positive constants and f and g be arbitrary elements in H. For each
λ ∈ P , we consider the following problem:

Find elements x, y ∈ H such that

(2.2)


〈ρ(N(Ay,By,Cy, λ)− f) + x− y, η(u, x, λ)〉
≥ ρφ(x, λ)− ρφ(u, λ),

〈β(N(Ax,Bx,Cx, λ)− g) + y − x, η(u, y, λ)〉
≥ βφ(y, λ)− βφ(u, λ),

∀u ∈ H,

which is known as the system of parameter general quasivariational-like in-
equalities.

It is clear that the system of parameter general quasivariational-like inequal-
ities (2.2) includes the systems of variational inequalities in [9, 12, 13] as special
cases.

Lemma 2.1. Suppose that {an}n≥0, {bn}n≥0, {cn}n≥0 and {tn}n≥0 are se-
quences of nonnegative numbers satisfying

an+1 ≤ (1− tn)an + tnbn + cn, ∀n ≥ 0

with {tn}n≥0 ⊆ [0, 1],
∑∞
n=0 tn =∞, limn→∞ bn = 0 and

∑∞
n=0 cn <∞. Then

limn→∞ an = 0.

Lemma 2.2. ([4]) Let η : H×H → H be δ-strongly monotone and τ -Lipschitz
continuous such that η(x, y) = −η(y, x) for all x, y ∈ H and for any given
x, u ∈ H, the functional h(y, u) = 〈x − u, η(y, u)〉 is 0-DQCV in y. Let φ :
H → R be a lower semicontinuous η-subdifferentiable proper functional and
ρ > 0 be an arbitrary constant. Then the η-proximal mapping J∆φ

ρ of φ is
τ
δ -Lipschitz continuous.

By virtue of Definition 2.6 and Theorem 2.8 in [4], we obtain the following
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Lemma 2.3. For a given u ∈ H, the element z ∈ H satisfies the following
inequality

〈u− z, η(v, u)〉 ≥ ρφ(u)− ρφ(v), ∀v ∈ H,
if and only if u = J∆φ

ρ (z), where ρ > 0 is a constant and J∆φ
ρ = (I + ρ∆φ)−1

is the η-proximal mapping of φ.

3. Iterative algorithm

It follows from Lemma 2.3 that

Lemma 3.1. Let ρ and β be positive constants, and f and g be arbitrary
elements in Hand λ ∈ P . Then the following statements are equivalent to each
other.

(a) the system of parameter general quasivariational-like inequalities (2.2)
has a solution (x, y) ∈ H ×H;

(b) there exists (x, y) ∈ H ×H satisfying

(3.1)
x = J∆φ(·,λ)

ρ [y − ρ(N(Ay,By,Cy, λ)− f)],

y = J
∆φ(·,λ)
β [x− β(N(Ax,Bx,Cx, λ)− g)];

(c) the mapping F (·, λ) : H → H defined by

(3.2)

F (u, λ) = J∆φ(·,λ)
ρ {J∆φ(·,λ)

β (u− β(N(Au,Bu,Cu, λ)− g))

− ρ[N(AJ∆φ(·,λ)
β (u− β(N(Au,Bu,Cu, λ)− g)),

BJ
∆φ(·,λ)
β (u− β(N(Au,Bu,Cu, λ)− g)),

CJ
∆φ(·,λ)
β (u− β(N(Au,Bu,Cu, λ)− g)))− f ]}, ∀u ∈ H

has a fixed point x ∈ H and y = J
∆φ(·,λ)
β (x− β(N(Ax,Bx,Cx, λ)− g)).

Remark 3.1. Lemma 2.1 in [9, 12] and Lemma 1.3 in [13] are special cases of
Lemma 3.1.

Based on Lemma 3.1 we suggest the following perturbed iterative algorithms
for the system of parameter general quasivariational-like inequalities (2.2).

Algorithm 3.1. Let A,B,C : H → H, N : H × H × H × P → H, η :
H ×H × P → H and φ : H × P → R be mappings. For any given x0 ∈ H, the
iterative sequences {xn}n≥0 and {yn}n≥0 are defined by

(3.3)

zn = (1− bn)xn + bnF (xn, λ) + pn,

xn+1 = (1− an)xn + anFn(zn, λ) + anun + vn,

yn = J
∆φ(·,λ)
β (xn − β(N(Axn, Bxn, Cxn, λ)− g)) + wn, ∀n ≥ 0,

where F (·, λ) is defined by (3.2) and {an}n≥0 and {bn}n≥0 are any sequences
in [0, 1] and {un}n≥0, {vn}n≥0, {wn}n≥0, {pn}n≥0 are arbitrary sequences in H
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satisfying

(3.4)

∞∑
n=0

an =∞,
∞∑
n=0

‖vn‖ <∞,

lim
n→∞

‖un‖ = lim
n→∞

‖wn‖ = lim
n→∞

‖pn‖ = 0.

Algorithm 3.2. Let A,B,C,N, η and φ be same as in Algorithm 3.1. For
each x0 ∈ H, compute the sequences {xn}n≥0 and {yn}n≥0 by the iterative
procedure

(3.5)

yn = J
∆φ(·,λ)
β (xn − β(N(Axn, Bxn, Cxn, λ)− g)) + wn,

xn+1 = (1− an)xn + anJ
∆φ(·,λ)
ρ (yn − ρ(N(Ayn, Byn, Cyn, λ)− f))

+ anun + vn, ∀n ≥ 0,

where {an}n≥0 is any sequence in [0, 1] and {un}n≥0, {vn}n≥0 and {wn}n≥0

are arbitrary sequences in H satisfying

(3.6)
∞∑
n=0

an =∞,
∞∑
n=0

‖vn‖ <∞, lim
n→∞

‖un‖ = lim
n→∞

‖wn‖ = 0.

4. Existence and convergence

Theorem 4.1. Let A,B,C : H → H be Lipschitz continuous with contants
m,n and l, respectively. Let N : H ×H ×H ×P → H be Lipschitz continuous
with constants a, b, c in the first, second and third arguments, respectively, and
N be strongly monotone with constants r with respect to A in the first argument,
relaxed monotone with constant s with respect to B in the second argument. Let
η : H ×H × P → H be δ-strongly monotone and τ -Lipschitz continuous with
η(x, y, λ) = −η(y, x, λ),∀x, y ∈ H,λ ∈ P and for each x, u ∈ H,λ ∈ P the
function h(y, u, λ) = 〈x − u, η(y, u, λ)〉 is 0-DQCV in y. Let φ : H × P → H
be a lower semicontinuous η-subdifferentiable proper functional. Let ρ and β
be positive constants. If there exists a constant θ satisfying

(4.1)
θ =
(τ
δ

)2

(
√

1− 2ρ(r − s) + ρ2(am+ bn)2 + ρcl)

× (
√

1− 2β(r − s) + β2(am+ bn)2 + βcl) < 1,

then for any given f, g ∈ H, λ ∈ P , the system of parameter general quasivari-
ational-like inequalities (2.2) has a unique solution (x, y) ∈ H ×H.

Proof. For each given λ ∈ P , we assert that F (·, λ) : H → H defined by (3.2) is
a contraction mapping. Since N is both a-Lipschitz continuous and r-strongly
monotone in the first argument, b-Lipschitz continuous and s-relaxed mono-
tone in the second argument and c-Lipschitz continuous in the third argument,
A,B,C are Lipschitz continuous with constants m,n and l, respectively, it
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follows from Lemma 2.2 that

(4.2)

‖F (u, λ)− F (v, λ)‖

≤ τ

δ
‖J∆φ(·,λ)
β (u− β(N(Au,Bu,Cu, λ)− g))

− J∆φ(·,λ)
β (v − β(N(Av,Bv,Cv, λ)− g))

− ρ[N(AJ∆φ(·,λ)
β (u− β(N(Au,Bu,Cu, λ)− g)),

BJ
∆φ(·,λ)
β (u− β(N(Au,Bu,Cu, λ)− g)),

CJ
∆φ(·,λ)
β (u− β(N(Au,Bu,Cu, λ))))

−N(AJ∆φ(·,λ)
β (v − β(N(Av,Bv,Cv, λ)− g)),

BJ
∆φ(·,λ)
β (v − β(N(Av,Bv,Cv, λ)− g)),

CJ
∆φ(·,λ)
β (v − β(N(Av,Bv,Cv, λ))))]‖

≤ θ‖u− v‖

for all u, v ∈ H. (4.1) and (4.2) mean that F (·, λ) is a contraction map-
ping and hence it has a unique fixed point x ∈ H. Set y = J

∆φ(·,λ)
β (x −

β(N(Ax,Bx,Cx, λ)−g)). It follows from Lemma 3.1 that the system of parame-
ter general quasivariational-like inequalities (2.2) has a solution (x, y) ∈ H×H.
Now we claim that (x, y) is the unique solution of the system of parameter
general quasivariational-like inequalities (2.2). In fact, if (u, v) ∈ H × H is
also a solution of the the system of parameter general quasivariational-like in-
equalities (2.2), by Lemma 3.1 we know that u = F (u, λ) and v = J

∆φ(·,λ)

β (u−
β(N(Au,Bu,Cu, λ)−g)). It follows from the uniqueness of fixed point of F (·, λ)
that u = x and hence v = J

∆φ(·,λ)
β (u − β(N(Au,Bu,Cu, λ) − g)) = y. This

completes the proof. �

Theorem 4.2. Let the conditions of Theorem 4.1 hold. If there exists a positive
constant θ satisfying (4.1), then for any given f, g ∈ H, λ ∈ P , the system of
parameter general quasivariational-like inequalities (2.2) has a unique solution
(x, y) ∈ H ×H and limn→∞ xn = x and limn→∞ yn = y, where {xn}n≥0 and
{yn}n≥0 are the sequences generated by Algorithm 3.1.

Proof. It follows Theorem 4.1 that the system of parameter general quasivari-
ational-like inequalities (2.2) has a unique solution (x, y) ∈ H × H. Now we
claim the sequences {xn}n≥0 and {yn}n≥0 generated by Algorithm 3.1 converge
strongly to x and y, respectively. As in the proof of Theorem 4.1, we know
that (4.2) holds. In view of (3.3), (4.1) and (4.2), we conclude that

(4.3) ‖xn+1 − x‖ ≤ [1− (1− θ)an]‖xn − x‖+ anθ‖pn‖+ an‖un‖+ ‖vn‖
and

(4.4) ‖yn − y‖ ≤
τ

δ

(√
1− 2β(r − s) + β2(a+ b)2 + βc

)
‖xn − x‖+ ‖wn‖
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for all n ≥ 0, where F (·, λ) and θ are defined by (3.2) and (4.1), respectively. It
follows from Lemma 2.2, (3.4) and (4.3) that limn→∞ xn = x. Letting n→∞
in (4.4), by (3.4) we infer that limn→∞ yn = y. This completes the proof. �

Theorem 4.3. Let A,B,C,N, η and φ be as in Theorem 4.1. If there exists
a positive constant θ satisfying (4.1), then for any given f, g ∈ H,λ ∈ P ,
the system of parameter general quasivariational-like inequalities (2.2) has a
unique solution (x, y) ∈ H×H and limn→∞ xn = x and limn→∞ yn = y, where
{xn}n≥0 and {yn}n≥0 are the sequences generated by Algorithm 3.2.

Proof. Theorem 4.1 ensures that the system of parameter general quasivari-
ational-like inequalities (2.2) has a unique solution (x, y) ∈ H ×H. As in the
proof of Theorems 4.1 and 4.2, we conclude that (4.4) holds and

(4.5)
‖xn+1 − x‖ ≤ [1− (1− θ)an]‖xn − x‖

+ an(‖un‖+ ‖wn‖) + ‖vn‖, ∀n ≥ 0.

It follows from Lemma 2.2, (3.6) and (4.5) that xn → x as n→∞. Thus (4.4)
and (3.6) yield that yn → y as n→∞. This completes the proof. �

Remark 4.1. Theorems 4.1∼4.3 extend, improve and unify Theorem 3.6 in
[4] and Theorems 2.1∼2.3 in [9, 12, 13].

5. Sensitivity analysis

Now we analyze the sensitivity of solutions for the system of parameter
general quasivariational-like inequalities (2.2).

Theorem 5.1. Let the conditions of Theorem 4.1 be satisfied. Assume that
N is continuous (resp. uniformly continuous or Lipschitz continuous) with
respect to the fourth argument, η is continuous (resp. uniformly continuous or
Lipschitz continuous) with respect to the third argument and φ is continuous
(resp. uniformly continuous or Lipschitz continuous) with respect to the second
argument. Suppose that there exists ζ satisfying

(5.1) ‖J∆φ(·,λ)
ρ (z)− J∆φ(·,λ)

ρ (z)‖ ≤ ζ‖λ− λ‖, ∀z ∈ H, λ, λ ∈ P.
Then the solutions of the system of parameter general quasivariational-like in-
equalities (2.2) are continuous (resp. uniformly continuous or Lipschitz conti-
nuous).

Proof. Let F (·, λ) be defined by (3.2). It follows from Theorem 4.1 that for any
λ ∈ P there exists a unique (x, y) ∈ H×H denoted by x(λ) and y(λ) such that
they are the solution of the system of parameter general quasivariational-like
inequalities (2.2). Hence for each λ, λ ∈ P , we get that

x(λ) = F (x(λ), λ), x(λ) = F (x(λ), λ),

(5.2)
y(λ) =J∆φ(·,λ)

β (x(λ)− β(N(A(x(λ)), B(x(λ)), C(x(λ)), λ)− g)),

y(λ) =J∆φ(·,λ)
β (x(λ)− β(N(A(x(λ)), B(x(λ)), C(x(λ)), λ)− g)),
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(5.3)
‖x(λ)− x(λ)‖ ≤ ‖F (x(λ), λ)− F (x(λ), λ)‖

+ ‖F (x(λ), λ)− F (x(λ), λ)‖,

(5.4)

‖y(λ)− y(λ)‖

= ‖J∆φ(·,λ)
β (x(λ)− β(N(A(x(λ)), B(x(λ)), C(x(λ)), λ)− g))

− J∆φ(·,λ)
β (x(λ)− β(N(A(x(λ)), B(x(λ)), C(x(λ)), λ)− g))‖.

Set
X(λ, λ) = x(λ)− β(N(A(x(λ)), B(x(λ)), C(x(λ)), λ)− g),

X(λ, λ) = x(λ)− β(N(A(x(λ)), B(x(λ)), C(x(λ)), λ)− g).

It follows from Lemma 2.2 and (5.1) that
(5.5)
‖F (x(λ), λ)− F (x(λ), λ)‖

≤ ζ‖λ− λ‖+
τ

δ
{(‖J∆φ(·,λ)

β (X(λ, λ))− J∆φ(·,λ)
β (X(λ, λ))‖

+ ‖J∆φ(·,λ)
β (X(λ, λ))− J∆φ(·,λ)

β (X(λ, λ))‖)

+ ρ[‖N(AJ∆φ(·,λ)
β (X(λ, λ)), BJ∆φ(·,λ)

β (X(λ, λ)), CJ∆φ(·,λ)
β (X(λ, λ)), λ)

−N(AJ∆φ(·,λ)
β (X(λ, λ)), BJ∆φ(·,λ)

β (X(λ, λ)), CJ∆φ(·,λ)
β (X(λ, λ)), λ)‖

+ ‖N(AJ∆φ(·,λ)
β (X(λ, λ)), BJ∆φ(·,λ)

β (X(λ, λ)), CJ∆φ(·,λ)
β (X(λ, λ)), λ)

−N(AJ∆φ(·,λ)
β (X(λ, λ)), BJ∆φ(·,λ)

β (X(λ, λ)), CJ∆φ(·,λ)
β (X(λ, λ)), λ)‖

+ ‖N(AJ∆φ(·,λ)
β (X(λ, λ)), BJ∆φ(·,λ)

β (X(λ, λ)), CJ∆φ(·,λ)
β (X(λ, λ)), λ)

−N(AJ∆φ(·,λ)
β (X(λ, λ)), BJ∆φ(·,λ)

β (X(λ, λ)), CJ∆φ(·,λ)
β (X(λ, λ)), λ)‖

+ ‖N(AJ∆φ(·,λ)
β (X(λ, λ)), BJ∆φ(·,λ)

β (X(λ, λ)), CJ∆φ(·,λ)
β (X(λ, λ)), λ)

−N(AJ∆φ(·,λ)
β (X(λ, λ)), BJ∆φ(·,λ)

β (X(λ, λ)), CJ∆φ(·,λ)
β (X(λ, λ)), λ)‖

+ ‖N(AJ∆φ(·,λ)
β (X(λ, λ)), BJ∆φ(·,λ)

β (X(λ, λ)), CJ∆φ(·,λ)
β (X(λ, λ)), λ)

−N(AJ∆φ(·,λ)
β (X(λ, λ)), BJ∆φ(·,λ)

β (X(λ, λ)), CJ∆φ(·,λ)
β (X(λ, λ)), λ)‖

+ ‖N(AJ∆φ(·,λ)
β (X(λ, λ)), BJ∆φ(·,λ)

β (X(λ, λ)), CJ∆φ(·,λ)
β (X(λ, λ)), λ)

−N(AJ∆φ(·,λ)
β (X(λ, λ)), BJ∆φ(·,λ)

β (X(λ, λ)), CJ∆φ(·,λ)
β (X(λ, λ)), λ)‖

+ ‖N(AJ∆φ(·,λ)
β (X(λ, λ)), BJ∆φ(·,λ)

β (X(λ, λ)), CJ∆φ(·,λ)
β (X(λ, λ)), λ)

−N(AJ∆φ(·,λ)
β (X(λ, λ)), BJ∆φ(·,λ)

β (X(λ, λ)), CJ∆φ(·,λ)
β (X(λ, λ)), λ)‖]}

≤ ζ
[
1 +

τ

δ
(1 + 3ρ(am+ bn+ cl))

]
‖λ− λ‖
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+
(τ
δ

)2

β[1 + ρ(am+ bn+ cl)]‖N(A(x(λ)), B(x(λ)), C(x(λ)), λ)

−N(A(x(λ)), B(x(λ)), C(x(λ)), λ)‖

+
ρτ

δ
‖N(A(v), B(v), C(v), λ)−N(A(v), B(v), C(v), λ)‖,

where v = J
∆φ(·,λ)
β (x(λ) − β(N(A(x(λ)), B(x(λ)), C(x(λ)), λ) − g)). It follows

from (4.2) that

(5.6) ‖F (x(λ), λ)− F (x(λ), λ)‖ ≤ θ‖x(λ)− x(λ)‖.
Combining (5.3), (5.5) and (5.6), we infer that

(5.7)

‖x(λ)− x(λ)‖

≤ (1− θ)−1ζ[1 +
τ

δ
(1 + 3ρ(am+ bn+ cl))]‖λ− λ‖

+
(τ
δ

)2

β[1 + ρ(am+ bn+ cl)]‖N(A(x(λ)), B(x(λ)), C(x(λ)), λ)

−N(A(x(λ)), B(x(λ)), C(x(λ)), λ)‖

+
ρτ

δ
‖N(A(v), B(v), C(v), λ)−N(A(v), B(v), C(v), λ)‖.

From (5.4), we get that

(5.8)

‖y(λ)− y(λ)‖

≤ ζ‖λ− λ‖+
τ

δ
(1 + β(am+ bn+ cl))‖x(λ)− x(λ)‖

+
βτ

δ
‖N(A(x(λ)), B(x(λ)), C(x(λ)), λ)

−N(A(x(λ)), B(x(λ)), C(x(λ)), λ)‖.

It follows from (5.7), (5.8) and the continuity of N (resp. uniform continuity or
Lipschitz continuity) with respect to the fourth argument that the solutions of
the system of parameter general quasivariational-like inequalities (2.2) are con-
tinuous (resp. uniformly continuous or Lipschitz continuous). This completes
the proof. �

Remark 5.1. Theorem 5.1 extends and improves Theorem 3.4 in [10], Theorem
2.1 in [11], Theorem 3.3 in [14] and Theorem 3.1 in [17].
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