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FIXED POINT THEOREM FOR NONCOMPATIBLE
DISCONTINUOUS MAPPINGS AND BEST

APPROXIMATION

Sushil Sharma and Bhavana Deshpande

Abstract. The aim of this paper is to prove a common fixed point the-
orem in normed linear spaces for noncompatible, discontinuous mappings
without assuming completeness of the space. We also give an application

of our theorem to best approximation theory.

1. Introduction and preliminaries

In 1976, Jungck [9] proved a common fixed point theorem for commuting
maps generalizing the Banach’s fixed point theorem. Banach fixed point theo-
rem has many applications but suffers from a draw back- the theorem requires
the continuity of the mapping throughout the space. Sessa [21] defined a gener-
alization of commutativity, which is called weak commutativity. Further Jungck
[10] introduced more generalized commutativity so called compatibility. Since
then various fixed point theorems for compatible mappings satisfying contrac-
tive type condition and assuming continuity of at least one of the mapping,
have been obtained by many authors.

It may be observed in this context that it is known since the paper of Kannan
[14] in 1968 that there exist maps that have discontinuity in their domain but
which have fixed points. However, the maps involved were continuous at the
fixed points.

The study of common fixed points of noncompatible mappings is also very
interesting. Work along these lines has recently been initiated by Pant [17],
[18].

In 1998, Jungck and Rhoades [12] introduced the notion of weakly compati-
ble maps and showed that compatible maps are weakly compatible but converse
need not be true.

On the other hand, Aamri and Moutawakil [1] generalized the concept of
noncompatible mappings by defining the property (E.A).
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Definition 1 ([10]). Let X be a normed linear space and let A,B : X → X
be two mappings. A and B are said to be compatible if whenever {xn} is a
sequence in X such that Axn, Bxn → t ∈ X, n → ∞ then

∥ABxn − BAxn∥ → 0 as n → ∞.

Definition 2 ([12]). Two self mappings A and B of a normed linear space X
are said to be weakly compatible if they commute at their coincidence points.

It is easy to see that two compatible maps are weakly compatible but con-
verse need not true.

Definition 3 ([1]). Let A and B be two self-mappings of a normed linear space
X. A and B satisfy the property (E.A) if there exists a sequence {xn} such that

lim
n→∞

Axn = lim
n→∞

Bxn = t, for some t ∈ X.

Remark 1 ([1]). It is clear from Jungck’s definition [10] that two self-mappings
A and B of a normed linear space X will be noncompatible if there exists at
least one sequence {xn} in X such that limn→∞ Axn = limn→∞ Bxn = t, for
some t ∈ X but limn→∞ ||ABxn − BAxn|| is either non zero or non-existent.
Therefore two noncompatible self-mappings of a normed linear space X satisfy
the property (E.A).

Let C be a subset of a normed linear space X and A : X → X. The set
of fixed points of A on X is denoted by F (A). If x̄ is a point of X, then for
0 < a ≤ 1, we define the set Da of best (C, a)-approximants to x̄ consists of
the point y in C such that

a||y − x̄|| = inf{||z − x̄|| : z ∈ C}.

For a = 1 our definition reduces to the set D of best C-approximants to x̄.
A subset C of X is said to be starshaped with respect to a point p ∈ C if, for
all x in C and for all λ ∈ [0, 1], λx + (1 − λ)p ∈ C. The point p is called the
star-centre of C. A convex set is star shaped with respect to each of its points,
but not conversely. For an example the set C = {0}× [0, 1]∪ [1, 0]×{0} is star
shaped with respect to (0, 0) ∈ C as the star-centre of C, but it is not convex.

Many authors have studied the applications of fixed point theorems to best
approximation theory including [2]-[8], [13], [15], [16], [19], [20], [22]-[30].

In this paper, we prove a common fixed point theorem in normed linear
spaces for noncompatible, discontinuous mappings, without assuming the com-
pleteness of the space. We improve and extend the result of Jungk [11] and
many others. We also give an application of our main theorem to best approx-
imation theory. Our application improves the results Pathak, Cho and Kang
[19], Sharma and Deshpande [23], [24].
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2. Main Results

Theorem 1. Let A and B be two noncompatible weakly compatible mappings
of a normed linear space X into itself satisfying

(1) ||Ax − Ay|| ≤ a||Bx − By|| + b max{||Bx − Ax||, ||By − Ay||}
+ c{||Bx − Ay|| + ||By − Ax||},

where a, b, c > o, a + b + c = 1, a + 2c < b. If B(X) is closed subset of X,then
A and B have a unique common fixed point.

Proof. Since A and B are two noncompatible mappings of a normed linear
space X into itself. So A and B satisfy the property (E.A), Therefore there
exists a sequence {xn} in X satisfying

lim
n→∞

Axn = lim
n→∞

Bxn = z, for some z ∈ X.

Since BX is closed, we have limn→∞ Bxn = Bu, for some u ∈ X. Thus Bu = z.
We claim Au = z. If not then condition (1) implies

||Axn − Au|| ≤ a||Bxn − Bu|| + bmax{||Bxn − Axn||, ||Bu − Au||}
+ c{||Bxn − Au|| + ||Bu − Axn||}.

Taking the limit as n → ∞ we obtain

||z − Au|| ≤ (b + c)||z − Au||,
which is a contradiction, so we have Au = z. Thus Au = Bu = z, i. e. u is
coincidence point of A,B and weak compatibility of A and B imply ABu =
BAu i. e. Az = Bz. We claim that Az = z. If not then condition (1) imply

||Az − Au|| = ||Az − z||
≤ a||Bz − Bu|| + bmax{||Bz − Az||, ||Bu − Au||}

+ c{||Bz − Au|| + ||Bu − Az||},
≤ (a + 2c)||Az − z||
< b||Az − z||,

which is a contradiction, so we have Az = z. Therefore Az = Bz = z i. e. z is
common fixed point of A and B.

For uniqueness suppose that z1is another fixed point of A and B. Then
using (1), we have

||z − z1|| = ||Az − Az1||
≤ a||Bz − Bz1|| + bmax{||Bz − Az||, ||Bz1 − Az1||}

+ c{||Bz − Az1|| + ||Bz1 − Az||}
= (a + 2c)||z − z1||
< b||z − z1||,

which is a contradiction. Therefore z = z1. This completes the proof.
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Example 1. Let X = [2, 20) with the usual norm. Define A,B : X → X by

Ax =

{
2 if x = 2 or x > 5,
3 if 2 < x ≤ 5,

Bx =


2 if x = 2,
12 if 2 < x ≤ 5,
x+1
3 if x > 5.

If we take a = 1
9, b = 13

18 , c = 3
18 , we can see that A and B satisfy all the

conditions of Theorem 1 and have a unique common fixed point 2 ∈ X.

It may be noted in this example that the mapping A and B commute at
coincidence point 2 ∈ X. So A and B are weakly compatible maps. Also BX
is closed subset of X.

Consider a sequence {xn = 5 + 1
n , n = 1, 2, 3, ...}, then

lim
n→∞

Axn = lim
n→∞

Bxn = 2.

Clearly A and B are noncompatible since

lim
n→∞

||ABxn − BAxn|| = |3 − 2| = 1 ̸= 0.

Also A and B are discontinuous mappings even at the common fixed point
x = 2.

Since two non compatible self-mappings of a normed linear space X satisfy
the property (E.A), we get the following result:

Corollary 1. Let A and B be two weakly compatible mappings of a normed
linear space X into itself satisfying:

||Ax − Ay|| ≤ a||Bx − By|| + b max{||Bx − Ax||, ||By − Ay||}
+ c{||Bx − Ay|| + ||By − Ax||},

where a, b, c > o, a+ b+ c = 1, a+2c < b. If B(X) is closed subset of X, A and
B satisfy the property (E.A), then A and B have a unique common fixed point.

Remark 2. The conclusion of Theorem 1 and Corollary 1 remains valid if we
assume that A(X) is closed instead of B(X) provided that A(X) ⊂ B(X).

Theorem 2. Let A and B be two of mappings of a normed linear space X
into itself and C be a nonempty, closed subset of X such that A : ∂C → C
and x̄ ∈ F (A) ∩ F (B). Further, suppose that A and B satisfy (1) for all x, y
in D′a = Da ∪ {x̄} ∪ E, where

E = {q ∈ X : Axn, Bxn → q, {xn} ⊂ Da},
a, b, c > o, a + b + c = 1, a + 2c < b. If A and B are continuous on Da and A
and B are noncompatible, weakly compatible in Da. If Da is nonempty, compact
convex and B(Da) = Da then Da ∩ F (A) ∩ F (B) ̸= ϕ.
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Proof. Let y ∈ Da and hence By is in Da since B(Da) = Da.
Further, if y ∈ ∂C then Ay is in C. Since A(∂C) ⊂ C, from (1), it follows

that
||Ay − x̄|| = ||Ay − Ax̄||

≤ a||By − Bx̄|| + b max{||By − Ay||, ||Bx̄ − Ax̄||}
+ c{||By − Ax̄|| + ||Bx̄ − Ay||}

≤ a||By − x̄|| + bmax{||By − x̄|| + ||x̄ − Ay||}
+ c{||By − x̄|| + ||x̄ − Ay||},

which implies a||Ay − x̄|| ≤ ||By − x̄|| and so Ay is in Da. Thus A maps Da
into itself. Clearly A(Da) ⊂ Da = B(Da).

Since A and B are noncompatible on Da, so A and B satisfy the property
(E.A), therefore

(2) lim
n→∞

Axn = lim
n→∞

Bxn = z, for some z ∈ D(a).

Since A(Da) ⊂ B(Da) there exists a point v ∈ Da such that z = Bv. Then
by (1), we have

||Av − z|| ≤ ||Av − Axn|| + ||Axn − z||
≤ a||Bv − Bxn|| + b max{||Bv − Av||, ||Bxn − Axn||

+ c{||Bv − Axn|| + ||Bxn − Av||} + ||Axn − z||.
Taking the limit as n → ∞, yields

||Av − z|| ≤ (b + c)||z − Av|| = (1 − a)||z − Av||.
So we have Av = z. Therefore Av = Bv = z. Since A and B are weakly
compatible then ABv = BAv i.e. Az = Bz. By (1), we have

||Az − x̄|| = ||Az − Ax̄||
≤ a||Bz − Bx̄|| + b max{||Bz − Az||, ||Bx̄ − Ax̄||}

+ c{||Bz − Ax̄|| + ||Bx̄ − Az||}
= (a + 2c)||Az − x̄||
< b||Az − x̄||.

Thus Az = x̄. So Az = Bz = x̄.
Next we consider

||Az − Axn|| ≤ a||Bz − Bxn|| + b max{||Bz − Az||, ||Bxn − Axn||}
+ c{||Bz − Axn|| + ||Bxn − Az||}.

Taking the limit n → ∞ yields

||x̄ − z|| ≤ (a + 2c)||x̄ − z|| < b||x̄ − z||.
So x̄ = z i.e. z = Az = Bz. By Theorem 1, z must be unique. Hence E = {z},
then D′a = Da ∪ {z}.



174 SUSHIL SHARMA AND BHAVANA DESHPANDE

Let {en} be a monotonically nondecreasing sequence of real numbers such
that 0 ≤ en < 1 and limn→∞en = 1. Let {xj} be a sequence in D′a satisfying
(2). For each n ∈ N, define a mapping An : D′a → D′a by

Anxj = enAxj + (1 − en)p.

It is possible to define such a mapping An for each n ∈ N since D′a is starshaped
with respect to p ∈ F (B). We have

lim
j→∞

Anxj = en lim
j→∞

Axj + (1 − en)z = enz + (1 − en)z = z.

Now, Anz = Bz = z and AnBz = z = BAnz. Therefore, B and An commute
at their coincidence point. Thus B and An weakly compatible on D′a for each
n and An( D′a) ⊂ D′a = B( D′a).

On the other hand by (1), for all x, y ∈ D′a, we have for all j ≥ n and n
fixed,

||Anx − Any|| = en||Ax − Ay||
≤ ej ||Ax − Ay||
< ||Ax − Ay||
≤ a∥Bx − By∥ + b max{||Bx − Ax||, ||By − Ay||}

+ c{||Bx − Ay|| + ||By − Ax||}
≤ a||Bx − By|| + b max{||Ax − Anx|| + ||Anx − Bx||,

||Ay − Any| + ||Any − By||}
+ c{||Any − Ay|| + ||Any − Bx|| + ||Anx − Ax||

+ ||Anx − By||}
≤ a||Bx − By|| + b max{(1 − en)||Ax − p|| + ||Anx − Bx||,

(1 − en)||Ay − p|| + ||Any − By||}
+ c{(1 − en)||Ay − p|| + ||Any − Bx|| + (1 − en)||Ax − p||

+ ||Any − By||}.

Hence for all j ≥ n,we have

||Anx − Any|| ≤ a||Bx − By|| + bmax{(1 − ej)||Ax − p| + ||Anx − Bx||,
(1 − ej)||Ay − p|| + ||Any − By||}

+ c{(1 − ej)||Ay − p|| + ||Any − Bx||
+ (1 − ej)||Ax − p|| + ||Any − By||}.

(3)
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Thus, since limj→∞ej = 1, from (3) for every n ∈ N, we have

||Anx − Any||
≤ lim

j→∞
[a||Bx − By|| + b max{(1 − ej)||Ax − p|| + ||Anx − Bx||,

(1 − ej)||Ay − p|| + ||Any − By||}
+ c{(1 − ej)||Ay − p|| + ||Any − Bx||

+ (1 − ej)||Ax − p|| + ||Any − By||},
which implies

||Anx − Any|| = a||Bx − By|| + bmax{||Anx − Bx||, ||Any − By||
+ c{||Any − Bx|| + ||Any − By||}

for all x, y ∈ D′a. Therefore by Theorem 1, for every n ∈ N, An and B have a
unique common fixed point xn in D′a i.e. for every n ∈ N, we have

F (An) ∩ F (B) = {xn}.
Now the compactness of Da ensures that {xn} has a convergent subsequence

{xni} which converges to a point w in Da. Since

(4) xni = Anixni = eniAni + (1 − eni)p

and A is continuous, we have as i → ∞ in (4) w = Aw i.e. w ∈ Da ∩ F (A).
Further, the continuity of B implies that

Bw = B( lim
i→∞

xni) = lim
i→∞

Bxni = lim
i→∞

xni = w,

i.e. w ∈ F (B). Therefore w ∈ Da∩F (A)∩F (B) and so Da∩F (A)∩F (B) ̸= ϕ.
This completes the proof.
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