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A SEMILOCAL CONVERGENCE ANALYSIS FOR A
CERTAIN CLASS OF MODIFIED NEWTON PROCESSES

Ioannis K. Argyros

Abstract. An error analysis introduced in [1], [2] is utilized in combi-
nation with nondiscrete mathematical induction to provide a finer than

before [3]–[7], [11] semilocal convergence analysis for a certain class of
modified Newton processes.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of equation

(1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y .

The most popular method for generating a sequence {xn} (n ≥ 0) approxi-
mating x∗ is undoubtedly Newton’s method

(2) xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0), (x0 ∈ D),

where F ′(x) ∈ L(X, Y ) the space of bounded linear operators from X into Y
[2], [4].

A survey on local as well as semilocal convergence theorems for Newton
method (1.2) can be found in [1], [2], [4], [12] and the references there. It is
known that if x0 is sufficiently close to x∗, sequence {xn} (n ≥ 0) converges
quadratically to x∗. A drawback in the application of this method is that at
each step the inversion of linear F ′(x) is required. Such a task is very difficult in
general. We can always replace method (1.2) by the modified Newton method

(3) yn+1 = yn − F ′(y0)−1F (yn) (y0 = x0), (n ≥ 0).
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However the convergence is only linear. In practice we prefer something in
between. That is we use the iterative procedure of the form

x0
n+1 = xm

n

xk+1
n+1 = xk

n+1 − F ′(xm
n )−1F (xk

n+1), k = 0, 1, . . . , m − 1, (n ≥ 0).(4)

Clearly at each step the procedure requires the computation of m values of the
operator F , the Fréchet derivative of F at one point and only one inversion of
a linear operator. It follows from a result by J.W. Schmidt and H. Schwetlick
[11] that method (1.4) has order of convergence equal to m + 1.

Potra and Ptak in [7] using the method of Nondiscrete Mathematical In-
duction inaugurated by V. Ptak [9], [10] showed a semilocal convergence result
for method (1.4) and also provided error bound on the distances ∥xn+1 − xn∥,
∥xn − x∗∥ which are sharp in some sense. The convergence result essentially
follows from a theorem of J. Dennis [3] but Potra’s error bounds are new. In
particular for m = 1 this contains a theorem given in [6], whereas for m = 2
his result improves a result obtained in [5].

The following standard conditions are used for all x, y ∈ D

∥T0[F ′(x) − F ′(y)]∥ ≤ ℓ∥x − y∥, ℓ ̸= 0,(5)
∥T0F (x0)∥ ≤ r0,(6)

hk = 2ℓr0 ≤ 1,(7)

µ ≥ r1 =
1 −

√
1 − hk

ℓ
,(8)

and

(9) U(x0, µ) = {x ∈ X | ∥x − x0∥ ≤ µ} ⊆ D.

Here we are motivated by Potra’s paper and we show that by using more
precise estimates and the same or even weaker hypotheses we can provide a
finer semilocal convergence analysis.

In order for us to achieve this task we use a combination of (1.5) and the
corresponding center-Lipschitz condition

(10) ∥T0[F ′(x) − F ′(x0)]∥ ≤ ℓ0∥x − x0∥ for all x ∈ D.

Note that in general

(11) ℓ0 ≤ ℓ

holds and ℓ
ℓ0

can be arbitrarily large [1], [2]. Note that the case m = 1 has
already been examined by us in [1], [2].

In order for us to make the study as self-contained as possible we provide
some needed concepts on nondiscrete mathematical induction [7]–[9].
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2. Nondiscrete Mathematical Induction

If m is a natural integer and S is a given set we denote by Am the Cartesian
product of m copies of A. If y ∈ Am, Pjy denotes its j-th component, so that

y = (P1(y), P2(y), . . . , Pj(y), . . . , Pm(y)).

For each n ≥ 0 we define
g(0)(s) = s,

and
g(n+1)(s) = g(g(n)(s)) (n ≥ 0), (s ∈ S).

Let T be either (0, +∞) or (0, b) with be positive. Let w be a function
mapping T into Tm. We shall, sometimes write wj for pjw. For w[1] = w,
define w[n] by

w[n+1] = w[n] ◦ wm (n ≥ 1).
We need the definition:

Definition 2.1. A function w : T → Tm is called a rate of convergence of type
(1,m) on T if

(1)
∞∑

n=1

 m∑
j=1

Pjw
[n](r)

 < ∞ for all r ∈ T.

Set w0(r) = r and for all r ∈ T define

f = w0 + w1 + · · · + wm−1.

Mapping w is a rate of convergence of type (1, m) on T if and only if the series

σ(r) = f(r) + f(wm(r)) + f(w(2)
m (r)) + · · ·

is convergent for all r ∈ T . Clearly we have

(2) σ(wm(r)) = σ(r) − f(r).

Using this notion Potra [7] constructed the multidimensional analogue of method
(1.5) as follows, first let

σj = σ − (w0 + w1 + · · · + wj−1), j = 2, 3, . . . , m.

Let X be a Banach space, Q a mapping of X into Xm and let a starting
point x0 ∈ X be given. Define a sequence {xn} ∈ Xm by:

x1 = Q(x0)(3)
xn+1 = Q(Pm(xn)) n ≥ 1.(4)

We denote the components Pj , Q(x) of Q(x) by Qj(x) and set Q0 = I. We
also use the notation

xm
0 = x0, xj

n = Pj(xn) (n ≥ 1), j = 1, 2, . . . , m.

The proofs of the Proposition and Lemma that follow needed for our main
semilocal convergence theorem can be found in [7].
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Proposition 2.2. If we can attach to the pair (F, x0) a (1,m) rate of conver-
gence w and a family of sets Z(r) ⊂ X, r ∈ T such that the following conditions
hold:

x0 ∈ Z(r0) for some r0 ∈ T(5)
x ∈ Z(r) implies Qm(x) ∈ Z(wm(r))(6)

and

(7) d(Qj+1(x), Qj(x)) ≤ wj(r), r ∈ T, j = 0, 1, 2, . . . , m − 1,

then there exists a point x∗ ∈ X with the following properties:
(a) each of the m sequences {Pjxn}, j = 1, 2, . . . , m converges to x∗;
(b) the following estimates hold for all n ≥ 0:

(8) xm
n ∈ Z(w[n]

m (r0))

(9) d(xj+1
n+1, x

j
n+1) ≤ Pjw

[n+1](r0), j = 1, 2, . . . ,m − 1

d(x1
n+1, x

m
n ) ≤ w[n]

m (r0),(10)

d(xm
n , x∗) ≤ σ(w(n)

m (r0)),(11)

d(xj
n+1, x

∗) ≤ σj , j = 1, 2, . . . , m − 1;(12)

(c) If

(13) xm
n−1 ∈ Z

(
d(x1

n, xm
n−1)

)
for some n, then, for this n, the following hold

(14) d(xj
n, x∗) ≤ σj

(
d(x1

n, xm
n−1)

)
, j = 1, 2, . . . , m.

Lemma 2.3. Let a ≥ 0 and m a natural integer be given. Let T be the set of
all positive real numbers. Define functions f , wj, j = 0, 1, . . . , m for r ∈ T by

f(r) = r +
√

r2 + a2(15)
w0(r) = r(16)

wk+1 =
wk

2f
[wk + 2(w0 + · · · + wk−1)], 0 ≤ k ≤ m − 2(17)

and

(18) wm =
wm−1[wm−1 + 2(w0 + · · · + wm−2)]

2[f − (w0 + · · · + wm−1)]
,

respectively.
Then functions wj, j = 1, 2, . . . , m constitute a rate of convergence of type

(1,m) on T and the corresponding σ function is given by

(19) σ(r) = r +
√

r2 + a2 − a.
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In [1] we provided a series of weaker conditions for the convergence of method
(1.2). For simplicity we only state one of them

(20) hδ
A = (ℓ + δℓ0)r0 ≤ δ, δ ∈ [0, 1].

In view of (1.11) note that e.g.

(21) hk ≤ 1 ⇒ h1
A ≤ 1

but not vice versa unless if ℓ0 = ℓ.
We can state the following semilocal result for Newton’s method (1.2) [1],

[2]:

Theorem 2.4. If conditions (1.5), (1.6), (1.9) (for µ ≥ r∗), (1.10), and (2.19)
hold, then Newton’s method (1.2) converges to a unique solution x∗ of equation
F (x) = 0 in U(x0, r

∗), where

(22) r∗ = lim
n→∞

rn ≤ 2r0

2 − δ
,

and

(23) r0 = 0, r1 = r0, rn+2 = rn+1 +
ℓ(rn+1 − rn)2

2(1 − ℓ0rn+1)
(n ≥ 0).

Moreover if (1.7) holds then

(24) r∗ ≤ r1,

where r1 is given by (1.8).
We can show the main semilocal convergence theorem for method (1.4):

Theorem 2.5. Under hypotheses of Theorem 2.4 for δ = 1, µ ≥ r∗, further
assume there exists a ∈

(
0, 1

ℓ

]
such that

(25) ℓ(σ(r0) + a) ≤ 1,

and

(26) σ(r0) ≤ r∗.

Then sequence {xn} generated by method (1.4) is well defined, remains in
U(x0, r

∗) for all n ≥ 0 and converges to a unique solution x∗ of equation
F (x) = 0 in U(x0, r

∗).
Moreover the following estimates hold:

(27) ∥xj
n − x∗∥ ≤ σj

(
w(n−1)

m (r0)
)
,

and

(28) ∥xj
n − x∗∥ ≤ σj

(
∥x1

n − xm
n−1∥

)
for all j = 1, 2, . . . , m and n ≥ 1.
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Proof. Iterative method (1.4) can be written in the form (2.3) provided that
mapping Q is defined:

Q0(x) = x,

Q1(x) = x − F ′(x)−1F (x)
Q2(x) = Q1(x) − F ′(x)−1F (Q1(x))

· · · · · · · · ·(29)
Qm(x) = Qm−1(x) − F ′(x)−1F (Qm−1(x))

Q(x) =
(
Q1(x), Q2(x), . . . , Qm(x)

)
.

We also define Z(·) the family of subsets of X by

Z(r) =
{
x ∈ X | ∥x − x0∥ ≤ σ(r0) − σ(r), F ′(x)

is invertible and ∥F ′(x)−1F (x)∥ ≤ r
}
.(30)

We shall show that all hypotheses of Proposition 2.2 hold true. In view of
the initial condition (1.6) and (2.29) we deduce x0 ∈ Z(r0). Let us assume
x ∈ Z(r). We must show

(31) ∥Qi(x) − Qi+1(x)∥ ≤ wi(r), i = 0, 1, . . . ,m − 1.

For i = 0, (2.30) becomes ∥F ′(x)−1F (x)∥ ≤ r, which follows from (2.29). For
m > 1 assume (2.30) holds true for i = 0, 1, 2, . . . , k, k ≤ m − 2.

In view of (2.28) we have

(32) ∥Qk+2(x) − Qk+1(x)∥ = ∥F ′(x)−1F (Qk+1(x))∥
≤ ∥(I − T0(F ′(x0) − F ′(x)))−1∥ · ∥T0F (Qk+1(x))∥.

Using (1.10) and (2.24) we get

(33) ∥T0(F ′(x0) − F ′(x))∥ ≤ ℓ0∥x − x0∥
≤ ℓ0(σ(r0) − σ(r)) ≤ ℓ(σ(r0) − σ(r)) < 1.

It follows from (2.32) and the Banach Lemma on invertible operators [4]
that [I − T0(F ′(x0) − F ′(x))]−1 exists and

(34) ∥[I − T0(F ′(x0) − F ′(x))]−1∥

≤ 1
1 − ℓ0(σ(r0) − σ(r))

≤ 1
ℓf(r)

by (2.24)).

We can also write

(35) F (Qk+1(x))

= F (Qk−1(x)) − F (Qk(x)) − F ′(x)[Qk+1(x) − Qk(x)],
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which leads to

∥T0F (Qk+1(x))∥
≤ ∥T0(F (Qk+1(x)) − F (Qk(x)) − F ′(Qk(x))(Qk+1(x) − Qk(x)))∥

+∥T0(F
′(Qk(x)) − F ′(x))(Qk+1(x) − Qk(x))∥

≤ 1

2
ℓ∥Qk+1(x) − Qk(x)∥2 + ℓ∥Qk(x) − x∥ ∥Qk+1(x) − Qk(x)∥

=
1

2
ℓwk(r)[wk(r) + 2(w0(r) + · · · + wk−1(r))].(36)

It follows from (2.31), (2.34) and (2.35) that (2.30) holds true for i = k + 1.
We shall show Qm(x) ∈ Z(wm(r)). In view of (2.30) we obtain

(37) ∥Qm(x) − x∥ ≤
m−1∑
i=0

wi(r) = f(r)

and by (2.2)

(38) ∥Qm(x) − x0∥ ≤ ∥Qm(x) − x∥ + ∥x − x0∥ ≤ σ(r0) − σ(wm(r)).

As in (2.32) we have

∥T0(F ′(x0) − F ′(Qm(x))∥ ≤ ℓ0∥Qm(x) − x0∥
≤ ℓ0(σ(r0) − σ(wm(r)) < 1.(39)

That is F ′(Qm(x)) is invertible. By (2.35) and (2.37) we get

∥F ′(Qm(x))−1F (Qm(x))∥
≤ ∥[I − T0(F ′(x0) − F ′(Qm(x))]−1∥ ∥T0F (Qm)(x))∥

≤ ℓwm−1(r)[wm−1(r) + 2(w0(r) + · · · + wm−2(r))]
2ℓf(r)

= wm(r),(40)

which shows (2.5) and (2.6).
According to (b) of Proposition 2.2 we have

(41) xm
n−1 ∈ Z(w(n−1)

m (r0)),

and

(42) ∥xm
n−1 − x1

n∥ ≤ w(n−1)
m (r0)

for all n ≥ 1.
Therefore we obtain by the monotonicity of function σ, (2.40) and (2.41):

(43) ∥xm
n−1 − x0∥ ≤ σ(r0) − σ(w(n−1)

m (r0)) ≤ σ(r0) − σ(∥xm
n−1 − x1

n∥),

which shows

(44) xm
n−1 ∈ Z(∥xm

n−1 − x1
n∥) (n ≥ 1).

Moreover (2.40) implies that (2.35) holds for x = xm
n−1 and k = m−1. Further-

more using (2.1), the invertibility of T0 and the continuity of F on U(x0, r
∗)

we get F (x∗) = 0.
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Finally the uniqueness part is omitted as identical to the one in the corre-
sponding theorem in [1], [2].

That completes the proof of the theorem. ¤

Remark 2.6. (a) If ℓ0 = ℓ, conditions (2.24) and (2.25) hold true for

(45) r∗ = r1

and

(46) a =
√

1 − hk

ℓ

and our Theorem 2.5 reduces to Theorem 4.1 in [7, p. 115].
(b) If (1.7) is violated but (2.19) (for δ = 1 or not) holds then our Theorems

2.4 and 2.5 can be used in cases where Theorem 4.1 in [7] cannot.
(c) If (1.7) and (2.19) (for say δ = 1) hold but (1.11) is true as a strict

inequality then it follows by (2.23) and (2.32) (or (2.34)) that our estimates
on the distances ∥xn − x∗∥, ∥xn+1 − xn∥ (n ≥ 0) and the information on the
location of the solution x∗ are at least as precise as the corresponding ones in
[7]. In practice we may want to replace r∗ by 2r0

2−δ although it can be compared
exactly using (2.22).

(d) Theorem 4.1 in [7] can also be improved if ℓ0 < ℓ since the second from
the right holds as strict inequality in (2.32). The inequalities that follow using
(2.32) also hold as strict inequalities which implies that under the hypotheses
of this theorem at least estimate (2.41) holds as a strict inequality.

Note that our results are obtained under the same computational cost since
in practice the computation of Lipschitz constant ℓ requires that of ℓ0.

Hence we have justified the claims made in the Introduction about the use-
fulness of our approach.
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