Abstract
In this paper, we proposed a new image summarization algorithm designed for automatically summarizing user's snapshot photos taken in a virtual environment based on user's context information and educational contents, and then presenting a summarized photos shortly after user's virtual reality experience. While other image summarization algorithms used date, location, and keyword to effectively summarize a large amount of photos, this algorithm is intended to improve users' memory retention by recalling their interests and important educational contents. This paper first describes some criteria of extracting the meaningful images to improve learning effects and the identification rate calculations, followed by the system architecture that integrates the virtual environment and the viewer interface. It will also discuss a user study to model the algorithm's optimal identification rate and then future research directions.
이 논문에서 우리는 교육용 가상환경에서 사용자가 직접 촬영한 사진들을 학습 내용과 사용자의 상황 정보를 바탕으로 자동으로 사진을 정리 요약해서 가상 환경 체험이 끝난 후 짧게 보여주는 새로운 사진 정리 알고리즘을 제안한다. 이 알고리즘은 기존의 날짜, 장소, 키워드를 이용하여 많은 양의 사진을 정리 요약해주는 사진 정리 알고리즘과는 달리 사용자의 관심도와 기억해야 할 주요 학습내용을 다시 한 번 살펴보도록 함으로써 기억 향상을 도와주는 것을 목적으로 한다. 본 논문에서는 먼저 학습 효과를 높이기 위해 교육적으로 의미가 있는 사진을 추출하는 기준과 인지율 계산을 설명하고, 이 알고리즘을 가상환경과 사진 뷰어 인터페이스와 연동한 전체적인 시스템을 설명한다. 또한 이 알고리즘에 사용된 인지율 모델링을 위한 사용자 실험 분석과 향후 연구 방향에 대해 논한다.