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ABSTRACT
This paper discusses the prediction of deforestation areas using probability models from 

forest census database, Geographic information system (GIS) database and the land cover 

database. The land cover data was analyzed using remotely-sensed (RS) data of the Landsat 

TM data from 1989 to 2001. Over the analysis period of 12 years, the deforestation area was 

about 40ha. Most of the deforestation areas were attributable to road construction and 

residential development activities. About 80% of the deforestation areas for residential 

development were found within 100m of the road network. More than 20% of the deforestation 

areas for forest road construction were within 100m of the road network. Geographic factors 

and vegetation change detection (VCD) factors were used in probability models to construct 

deforestation occurrence map. We examined the size effect of area partition as training area 

and validation area for the probability models. The Bayes model provided a better deforestation 

prediction rate than that of the regression model. 

KEYWORDS: Deforestation, Probabilistic Prediction, Bayes Model, Regression Model, 
Geographic Information System, Remote Sensing

 

요    약
본 연구에서는 행정정보, GIS, RS정보, 확률모델을 이용하여 교토의정서에서 정의하는 산림전용

지역의 추출가능성에 대하여 검토하였다. 1989년의 정사사진과 2001년의 IKONOS화상을 이용한 

산림전용지역의 특성을 보면, 1989년부터 2001년까지의 산림전용지역은 약 40ha로 나타났다. 산림

전용지역의 종류를 살펴보면, 도로(임도) 개설 및 주택지 개발을 위한 산림전용이 대부분을 차지하

였고, 택지전용지의 80%는 기존의 도로로부터 100m이내에 분포하였으며, 신설된 도로 또한 20%

이상이 기존의 도로로부터 100m이내에 분포하였다. 산림전용지역의 추출모델 구축을 위하여 지형
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인자와 위성영상인자를 이용하였으며, 확률 개념을 도입한 산림전용지 발생 확률 지도를 작성하였

다. 구축한 산지전용지 발생 모델의 유효성을 검증하기 위하여, 대상지역을 시스템적으로 구분하

여, 추출 정도를 비교·검토하였다. 베이즈 모델과 Regression모델을 비교한 결과, 베이즈모델이 

Regression모델보다 높은 추출확률을 나타냈다. 모델의 적합성을 평가하기위해서 대상지역을 2지

역으로 구분하여 한쪽의 정보만을 가지고 발생확률지도를 작성하고, 나머지 지역에 대하여 발생확

률을 검토한 결과에서도 베이즈모델이 높은 추출확률을 나타냈다. 

주요어 : 산림전용, 확률예측, 베이즈모델, 회귀모델, 지리정보시스템, 원격탐사

INTRODUCTION 
Article 3.3 of the Kyoto Protocol 

prescribes that three types of activities- 

afforestation, reforestation and deforestation  

are to be reported when accounting for 

forest sinks to compensate for greenhouses 

gases (GHG). Afforestation(A) is defined as 

"direct human-induced conversion of land 

that has not been forested for a period of at 

least 50years to forested land," reforestation(R) 

as "the direct human-induced conversion of 

non-forestedland to forested land," and 

deforestation (D) as "the direct human- 

induced conversion of forested land to. 

Kyoto protocol designates deforestation as 

required reporting item. 

Monitoring of forest change area should 

be possible assessed by remote sensing 

using aerial photos and satellite images. 

Although monitoring forest changes with 

satellite data includes land cover changes, 

articles 3.3 and 3.4 of the Kyoto Protocol 

require the monitoring of both land-use 

changes and land-cover changes. But 

because satellite remote sensing (RS) 

provides only land-cover spectral 

information, RS by itself is not sufficient for 

identifying LULUCF (Land use, Land-use 

change and forestry). Recently, to overcome 

the detection limitations of RS, RS and GIS 

techniques were recently combined with 

administrative information to improve forest 

change detection (Kodani, 2003; Hori et al., 2002).

On the other hand, quantitative methods 

have been applied to various disciplines such 

as Land-use and Land-cover classification 

(Elmore et al., 2000), forest structure 

monitoring (Franklin, 1986) and landslide 

hazard prediction (Carrera et al., 1991;Chung 

et al., 1995;Chung and Fabbri., 2003). 

Geometric probability based models (Fabbri 

and Chung,1996;Chung and Fabbri, 1999), 

statistical pattern integration and spatial 

reasoning will be useful to deforestation 

monitoring. Therefore, the development of 

methods that can be used to estimate 

deforestation areas in changing forest regions, 

as well as accompanying quantitative 

methods, will be useful in future studies. 

In this study, we proposed a new 

approach by linking Geographic Information 

system(GIS), RS and probability models that 

can be used to identify deforestation area 

accurately.

 

METHODS 
Figure 1 shows the methodology proposed in 

this study. The deforestation masks were 

obtained from satellite images and ground 

truth. GIS databases related to the deforestation 

areas were constructed from map sources.
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Figure 1. Method of prediction model

Factors for building the prediction model 

were identified from the geographic 

attributes of deforestation. These attributes 

were slope, distance from road network, and 

distance from forest and non-forest (F/NF) 

boundaries. In addition, vegetation change 

detection (VCD) based on Landsat TM 

band3 was also used as critical factors. The 

occurrence and prediction rates of 

deforestation were calculated for each factor.

Two joint conditional probability models 

(Bayes and regression estimation) were 

applied to every pixel of the deforestation 

areas and then used to construct a 

probability model. 

The deforestation areas were divided into 

two sub areas in the model. One area was 

used to construct the deforestation 

occurrence rate model, the other was used 

to construct the deforestation prediction 

model. 

To obtain the deforestation prediction 

map, estimated probabilities of occurrence 

were sorted in descending order. The 

ordered pixel values were then classified 

according to the rates of deforestation in the 

sub area. The occurrence rate curve (ORC) 

and prediction rate curve (PRC) were 

compared in terms of the proportion of 

corresponding pixels.

Description of study area 
Higashi-Shirakawa area was selected as a 

test site for this study. Based on the criteria 

of agricultural zoning, the study area is 

classified as hilly and mountainous area. 

Higashi-Shirakawa area is located in the 

southeastern part of Gifu Prefecture, Japan. 

and includes part of the wide valley of the 

Shirakawa River. It covers approximately 15 

by 15km and 8,711ha.(Longitude 137°15'24" 

to 137°24'35", Latitude 35°41'46" to 

35°35'51"). More than 90% (8,013ha) of the 

study area is covered with forest. However, 

the forest was dominated by plantation 
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forest (5,759ha). The test site receives mean 

annual precipitation of 2,258mm, The mean 

temperature ranges from -15°C to 34°C, 

with a mean of 12.9°C. 

Data acquisition and processing
TNTmips version 6.9 of Microimages was 

used for data processing and analysis. The 

remotely-sensed data sets used were 

medium-resolution Landsat TM images 

(1989/06/01, 2001/05/27), high-resolution 

satellite IKONOS image (PAN, 2003/07/26) 

and Digital-Orthophoto(1990/05). We performed 

geometric and radiometric corrections for 

satellite data (Smith et al., 1980).

Topographic effect due to surface slope 

angle and aspect variations was corrected 

for the Landsat TM. Instead of lambertian 

approach, the non-lambertian empirical 

photometric function outlined by Smith et 

al.(1980), based on a principle developed by 

Minnaert, was used to correct topographic 

effects. Relative normalization was applied to 

Landsat TM data for correcting the radiance 

difference in the multi-temporal data. Spatial 

forest management information including 

compartments, sub-compartments (1:5,000), 

and road networks (1:5,000), was digitized 

as a GIS database. 

The land cover change mask was 

produced using high-resolution remotely 

sensed images (orthophotos and IKONOS 

image) and groundtruth data. The land 

cover change mask defines the ARD mask, 

which consists of five categories 

i.e.permanent clearcut, forest road, 

slope-facing, tea plantation establishment, 

agricultural road and afforestation area.

Joint Conditional Probability 
Model

This study used the joint conditional 

model, proposed by Chung and Fabbri 

(1999), which can identify correlations 

between the positions of past deforestation 

areas and spatial data. Two joint conditional 

probability models (Bayes and regression 

estimation) were applied to every pixel of 

the deforestation areas and then used to 

construct a probability model. 

Suppose that   denoting a pixel   that 

will be affected by a future occurrence of 

deforestation. Future deforestation area at 

each pixel   can be expressed as a joint 

conditional probability:

⋯ ⋯ 

   
 



∩ 
 




         (1)

And, past deforestation area at each pixel 

  is expressed by the following joint 

conditional probability:

⋯  ⋯ 

   
 



∩ 
 




         (2)

Where S represents the areas affected by 

the past deforestation areas within A.

The deforestation area layer in addition to 

the four attribute layers in the study area, 

were used in the probability model (Figure 

2b). In the data set, 81 variables (3×3×3×3 = 
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81) were obtained from four data layers 

including the distribution of past 

deforestation areas. therefore, each pixel in a 

thematic classification map has a set of 

values such as (1,1,1,1), (1,1,1,2),....,(3,3,3,2), 

(3,3,3,3), depending on the combination of 

three categories of four thematic maps. All 

pixels where the observed values of the m 

layers that are identical were termed 

"unique condition sub-areas". The study 

area can be subdivided into a small number 

of unique condition sub-areas. ∩  

represents the presence of deforestation area 

in pixel of  unique condition based on the 

combination of the attribute layers (). 

Using the Bayes theory(Bayes, 1763), the 

joint conditional probability is shown as 

below:

⋯ 

⋯ 

⋯ 

⋯ ⋯ 

⋯           

             
  

 









⋯

     

                                   (3)

 : The size of S   :The size of ∩
Bayes theory was applied to the joint 

conditional probability model, which 

considered prior probability and posterior 

probability conditions simultaneously. In 

addition, A multivariate linear regression 

model for the conditional joint probability in 

Equation 4 for a pixel p can be postulated by

⋯    

⋯   

   

            (4)

Categorization of crucial factors 
and for deforestation prediction
1) Geospatial factors

Selection of crucial factors is an important 

aspect for building the deforestation 

probability model. By the basic proposition 

of probability model, categorization of 

selected factors is necessary for building a 

model.

Two accessibility factors, namely 

"distance from road to deforestation" and 

"distance from forest and non-forest (F/NF) 

boundary to deforestation" were selected as 

the crucial factors of the model. Forest area, 

non-forest area and road were derived from 

compartment data. The two accessibility 

factors, distance from road to deforestation 

and distance from forest and non-forest 

(F/NF) boundary to deforestation, were 

derived from compartment data and a 

DEM(Digital elevation model). 

The two accessibility factors were 

categorized into multiple classes of 150m 

interval. The slope factor was categorized 

based on reports of studies on quantification 

and evaluation of forest functions by 

Forestry Agency (Forestry Agency, 1998). 

Table 1 shows the categories of the three 

geospatial factors.

2) Vegetation change detection (VCD) factor

Image differencing technique is an 

effective analytical method for detecting 
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deforestation using satellite data especially 

for forest clearing where change brightness 

value is  very significant. Image differencing 

may be applied to a single band or to 

multiple bands. It is a simple and 

straightforward approach where changes in 

a pixel at line i and column j of band k 

(bvCijk) is computed as below:

bvCijk=bvijk(d2)- bvijk(d1)

bv : brightness value

d2 and d1 : date 2 and data 1,respectively

Differenced image resulted from the 

subtraction of two multitemporal images 

represents the change between the two 

dates. The change pixels can be expected to 

lie in the tails of the distributions of the 

differenced image, whereas the unchanged 

pixels should be grouped about the mean. 

In this study, image differencing 

techniques was applied on red (R) band i.e. 

band 3. Red (R) and near infrared (NIR) 

bands of remote sensing data are important 

to vegetation studies. R band comprises 

absorption wave lengths of chlorophyll of 

green vegetation (Tucker and Maxwell, 1976). 

The resulted band3 of VCD images were 

also categorized to three classes by 

thresholding based on statistical measures 

(mean and standard deviation (std)). 

Standard deviation from the mean is often 

employed and has been found suitable to 

determine change and no change area 

(Eastman and Mckendry, 1991). defined by 

VCDijk value lower than  1×std + mean is 

vegetation decrease class, otherwise 

vegetation increase class (VCDijk value > 

1×std + mean). No change class is defined 

by VCDijk values that fall within the 

standard deviation range. 

Construction of occurrence rate curve
Deforestation occurrence rate curve is 

based on the comparison between 

deforestation areas and the deforestation 

occurrence probability of the study area 

used in the two models. The deforestation 

occurrence probability was calculated and 

sorted in descending order. The number of 

pixels of the probability value and the 

corresponding deforestation areas were 

counted for the whole study area. The 

deforestation occurrence rate was calculated 

by dividing the number of deforestation 

pixels of the probability value with the total 

number of pixels of that probability value. 

Spatial partition and model 
performance

In prediction modeling, one of the most 

important components is to validate the 

predicted results. Without validation, the 

prediction model is less valuable and 

scientifically unsound (Chung and Fabbri, 

2003). Ideally, a prediction model should be 

validated by comparing the predicted result 

and the future deforestation area. Alternatively, 

the study area can be partitioned to construct 

and validate the model. We divided the 

study area into two sub-areas, A and B. 

Sub-area A was for constructing the model, 

while sub-area B was for validation of the 

predictedresults(Figure 3). 

RESULTS AND DISCUSSION 
1. The Characteristics of deforestation area 
Exploratory analysis on the GIS, RS and 
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(a)                                           (b)

Figure 2. Crucial factor of categorization 

a. Half portion partition         b. Grid-type into two groups

     

     

     

     : A 
 
: B 

Figure 3. Two types of spatial partition 

                        Category
Factor 1 2 3

Slope  -15 16-30  31-

Distance from road (m) -150 151-300 301-

Distance from F/NF boundary (m) -150 151-300 301-

VCDband3   -2 3-17  18-

Table 1. GIS data layers for prediction model
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forest census data revealed that distance 

from road network is the most crucial 

deforestation factor where 54% of 

deforestation was distributed from the road 

within 100m. This is followed by  the 

distance from the forest and non-forest 

boundary where 39% of deforestation was 

found within 300m. Most of the 

deforestation areas were attributed to road 

construction activities, which account for 

about 80% of the deforestation areas. The 

forest was cleared to make way for 

construction of forest and agricultural roads. 

Deforestation due to slope cutting for road 

construction has also contributed to 

deforestation. Forest clearing for residential 

development has accounted for about 10% of 

the deforestation areas. About one-third of 

the deforestation areas for residential 

development were found within 100m of the 

forest and non-forest boundary. 

2. Comparison of the joint probability 
models

1) Harf portion partition and model 

performance

We first examined the deforestation 

occurrence rates of the two probability 

models (Bayes and regression).We divided 

the study area into 2 sub-areas, namely 

sub-area A and B. The sub-area A was for 

constructing the model whereas the 

sub-area B was for validating the predicted 

results(Figure 3a). 

The deforestation areas induced by the 

ARD mask were 390 pixels and 95 pixels 

for the sub-area A and the rest in sub-area 

B. While sub-area A was used for 

occurrence estimation. The validated 

prediction image was constructed in 

sub-area B using the model built from 

sub-area A. 

Using the Bayes and regression models, 

the deforestation occurrence and prediction 

rates were calculated. For instance, when 

20% of the study area is considered, the 

occurrence rate is 63% (Figure 4a). Obviously, 

the occurrence and prediction rates increase 

with the increase in the portion of the study 

area considered. Thus, an ideal model should 

be the one achieving the highest accuracy 

for the smallest assigned portion of the 

study area. Figure 4 shows  deforestation 

occurrence rate curve (D-ORC) and 

deforestation prediction rate curve(D-PRC) 

with the half portion partition. In the case 

of the Bayes model, the agreement between 

the D-ORC and the D-PRC was very high 

for the top 5% of the study area (Figure 

4a). When the sub-areas A and B were 

reversed, disparity of the D-ORC and 

D-PRC of the Bayes model was observed 

but relatively acceptable compared to the 

regression model (Figure 4b). 

At this stage, it was premature to draw 

any conclusion on the performance of the 

models but the partition assignment seemed 

to produce a more profound influence on the 

regression model than the Bayes model. The 

half-portion partition was a very large 

spatial unit that about 80% of the 

deforestation areas were found in one half 

portion partition. When the sub-areas were 

reversed, the deforestation areas were too 

small for training the models and thus 

influenced the consistency of the results. A 

different partitioning strategy was therefore 
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Figure 4. D-ORC and D-PRC using two 
sub-areas (a)Sub-area A was 
used as training area and 
sub-area B was used as 
validation area (b) Training area 
and validation area were 
reversed from(a)

necessary to improve the performance of the models. 

2) Systematic grid partition and model 

performance

We further examined the effect of 

partition assignment by further partitioning 

the study area into smaller grids of 316m 

by 316m. The grids were systematically 

selected for modeling and validation. As 

such, the deforestation areas were more or 

less equally divided for modeling and 

validation. There were 246 pixels and 239 

pixels of the deforestation areas in grid 

groups A and B. Similar to the previous 

section, the grid groups A and B were used 

as training area and validation area at first. 

Then, they were reversed for comparison 

(Figure 3b).

Figure.5a and b show the influence of the 

systematic grid partition on the Bayes and 

regression models. Compared to the half 

partition, the difference between the 

occurrence and prediction rates was 

substantially small in both Bayes and 

regression models (Figure 5a). Reversing the 

grid groups has not resulted significant 

difference in the occurrence and prediction 

rates (Figure 5b). Summing the difference 

between the occurrence and prediction rates 

can also represent the consistency. The sum 

of difference of the Bayes model was 

significantly lower than that of the 

regression model, in both assignments of 

grid groups. While difference of occurrence 

and prediction rates from Bayes model was 

below 9%, difference of regression model 

was about 13%.

Tables 2a and b show the occurrence and 

prediction rates of the Bayes and regression 

models with the systematic grid partition.

 Table 2a shows the occurrence rate and 

prediction rate calculated using grid group A 

and B, respectively. Table 2b shows the 

results when the use of the groups was 

reversed. For the top 10% class, the Bayes 
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(b)

Figure 5. D-ORC and D-PRC using grid-type groups (a)Grid group A was used as 
training area and grid group B was used as validation area (b) Training area 
and validation area were reversed from(a)

 Bayes model Regression model 

 
Training area 

(246count) 

Validation 

area(239count) 

Training 

area(246count) 

Validation 

area(239count) 

Class deforestation % deforestation % deforestation % deforestation %

0-5% 100 41 100 42 86 35 95 40
0-10% 130 53 143 60 123 50 136 57
0-15% 135 55 152 64 146 59 146 61
0-20% 150 61 161 67 157 64 155 65
0-25% 161 65 173 72 167 68 168 70
0-30% 178 72 180 75 192 78 180 75
0-35% 185 75 182 76 197 80 184 77
0-40% 190 77 190 79 203 82 189 80
0-45% 203 83 195 82 207 84 195 82
0-50%     212 86 201 84

Table 2(a,b). The occurrence and prediction rates of the Bayes and regression models 
with the grid partition

a.  

 Bayes model Regression model 

 
Training 

area(239count) 

Validation 

area(246count) 

Training 

area(239count) 

Validation 

area(246count) 

Class deforestation % deforestation % deforestation % deforestation %

0-5% 113 47 111 45 89 37 65 26
0-10% 139 58 129 52 131 55 121 49
0-15% 152 64 134 54 159 67 137 56
0-20% 163 68 143 58 163 68 140 57
0-25% 175 73 149 61 168 70 144 59
0-30% 181 76 156 63 184 77 158 64
0-35% 184 77 164 67 189 79 165 67
0-40% 191 80 171 70 202 85 171 70
0-45% 197 82 180 73     
0-50% 203 85 181 74     

 b.
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Figure 6.  Deforestation prediction map based on Bayes probability

model performed better than the regression 

model. The regression model was able to 

identify about half of the deforestation areas 

at both training and prediction stages. In 

comparison, Bayes model successfully 

identified 53% and 60% of the deforestation 

area as training and validation, respectively 

(Table 2a). When the grid groups were 

reversed, the prediction rate of the Bayes 

model was also higher than the regression 

model. Though, the occurrence rate of the 

regression model was better than that of the 

Bayes model (Table 2b). 

Although the accuracies of the 2 models 

were relatively close, the Bayes model may 

be more suitable for monitoring 

deforestation. Consistency was considered as 

a decisive measure especially when the 

prediction models were not significantly 

differed. The Bayes model demonstrated 

very consistent result. The differences 

between the occurrence and prediction rates 

were consistent in both half and systematic 

grid partitions.   

Predicted deforestation map in the study 

area based on the Bayes model (Table 2a) 

is shown in Figure 6. The pixels with the 

highest 10% estimated probability values 

were classified as the 0 to 10 % class, 

shown as red. The pixels of the next 

highest 10% classes were represented in 

orange, yellow, green and blue. Gray color 

was assigned to the remaining 50% percent 

of the area. 

Factors of the probability model
There may be some factors that influence 

the performance of the Bayes model. The 

deforestation areas in Higashi-Shirakawa 

area during 1989 to 2001 was in fact the 

result of different land use decisions. The 

accuracy of prediction may be influenced by 

the heterogeneity of the deforestation areas 

and partition method of sub-areas. 

Thresholding using 1 standard deviation 

from the mean as criterion may not 

adequately capture the heterogeneous nature 

i.e. various types and sizes of deforestation. 

The Bayes model identified more than 
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70% of the deforestation areas for the top 

30% of the study area. Even by visual 

interpretation of the deforestation area, it 

was difficult to identify areas such as 

discontinued and small patch type of 

deforestation in the Landsat TM of 2001. 

Besides, there may be some changes in land 

cover during the time lag of 2 years 

between the satellite data and field work. 

Difficulty in identifying deforestation for tea 

plantation establishment and agriculture road 

construction may be due to the time lag. 

Ideally, the time of data acquisition should 

be synchronized. In practice, one can only 

make sure the data set is temporally as 

close as possible. 

Conclusion
A quantitative model was proposed for 

predicting deforestation occurrence using 

PRC. The occurrence and prediction rates 

were expressed in terms of the distribution 

of deforestation pixel proportions 

corresponding to the unique combination of 

three geographic factors and one VCD 

factor. ORC and PRC based on the Bayes 

probability was useful for identify 

deforestation area. The systematic grid 

partition was the best spatial partition 

approach for constructing the Bayes model. 

At a regional or national scale, geographic 

attribute information can be obtained with 

relative ease, either through digitizing of 

map sources or satellite data analysis. For 

improving the deforestation prediction, other 

factors such as stand structure may need to 

be considered. Further examination of the 

categorization of the factors may be needed. 

It is believed that this new approach is 

comparable to other prediction models 

analyzing the causal factors of LULUCF. 

Similar prediction model can also be 

constructed for monitoring other activities 

under the Kyoto Protocol such as 

afforestation and reforestation. We hope that 

the prediction model proposed in our study 

will contribute to the implementation process 

of the Kyoto Protocol. 
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