DOI QR코드

DOI QR Code

Atomistic simulation and investigation of nanoindentation, contact pressure and nanohardness

  • Chen, Chuin-Shan (Department of Civil Engineering, National Taiwan University) ;
  • Wang, Chien-Kai (Department of Civil Engineering, National Taiwan University) ;
  • Chang, Shu-Wei (Department of Civil Engineering, National Taiwan University)
  • Received : 2008.10.09
  • Accepted : 2008.11.24
  • Published : 2008.12.25

Abstract

Atomistic simulation of nanoindentation with spherical indenters was carried out to study dislocation structures, mean contact pressure, and nanohardness of Au and Al thin films. Slip vectors and atomic stresses were used to characterize the dislocation processes. Two different characteristics were found in the induced dislocation structures: wide-spread slip activities in Al, and confined and intact structures in Au. For both samples, the mean contact pressure varied significantly during the early stages of indentation but reached a steady value soon after the first apparent load drop. This indicates that the nanohardness of Al and Au is not affected by the indentation depth for spherical indenters, even at the atomistic scale.

Keywords

Acknowledgement

Supported by : National Science Council

References

  1. Baskes, M. I. (1992), "Modified embedded-atom potentials for cubic materials and impurities", Physical Review B, 46, 2727-2742. https://doi.org/10.1103/PhysRevB.46.2727
  2. Cormier, J., Rickman, J. M. and Delph, T. J. (2001), "Stress calculation in atomistic simulations of perfect and imperfect solids", J. Appl. Phy., 89(1), 99-104. https://doi.org/10.1063/1.1328406
  3. Cousland, S. McK. (1970), "Cottrell-Stokes ratios and stacking fault energies", Phys. Stat. Sol. 37, 159. https://doi.org/10.1002/pssb.19700370119
  4. Edelstein, A. S. and Cammarata, R. C. (1996), Nanomaterials: Synthesis, Properties and Application, Institute of Physics Publishing.
  5. Fischer-Cripps, A. C. (2002), Nanoindentation, Springer.
  6. Fung, Y. C. (1993), First Course in Continuum Mechanics, 3rd Edition, Prentice Hall.
  7. Gannepalli, A., Mallapragada, S.K. (2002), "Atomistic studies of defect nucleation during nanoindentation of Au (001)", Physical Review B, 66, 104103. https://doi.org/10.1103/PhysRevB.66.104103
  8. Herbert, E. G., Pharr, G. M., Oliver, W. C., Lucas, B. N. and Hay, J. L. (2001), "On the measurement of stressstrain curves by spherical indentation", Thin Solid Films, 398-399, 331-335. https://doi.org/10.1016/S0040-6090(01)01439-0
  9. Hirth, J. P. and Lothe, J. (1982), Theory of Dislocations, Wiley.
  10. Kiely, J. D. and Houston, J. E. (1998), "Nanomechanical properties of Au (111), (001), and (110) surfaces", Physical Review B, 57, 12588. https://doi.org/10.1103/PhysRevB.57.12588
  11. Liang, H. Y., Woo, C. H., Huang, H., Ngan, A. H. W. and Yu, T. X. (2003), "Dislocation nucleation in the initial stage during nanoindentation", Philosophical Mag., 83(31), 3609-3622. https://doi.org/10.1080/14786430310001605579
  12. Liao, F., Girshick, S. L., Mook, W. M., Gerberich, W. W. and Zachariah, M. R. (2005), "Superhard nanocrystalline silicon carbide films", Appl. Phys. Lett. 86, 171913. https://doi.org/10.1063/1.1920434
  13. Lilleodden, E. T., Zimmerman, J. A., Foiles, S. M. and Nix, W. D. (2003), "Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation", J. Mech. Phys. Solids, 51(5), 901-920. https://doi.org/10.1016/S0022-5096(02)00119-9
  14. Meyers, M. A., Mishra, A. and Benson D. J. (2006), "Mechanical properties of nanocrystalline materials", Progress in Materials Science, 51(4), 427-556. https://doi.org/10.1016/j.pmatsci.2005.08.003
  15. Oliver, W. C. and Pharr, G. M. (1992). "Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments", J. Mater. Res., 7(6), 1564-1580. https://doi.org/10.1557/JMR.1992.1564
  16. Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (2007), Numerical Recipes 3rd Edition: The Art of Scientific Computing, Third Edition Cambridge University Press.
  17. Rojek, J. and Onate, E. (2008), "Multiscale analysis using a coupled discrete/finite element model", Interaction and Multiscale Mechanics, An Int. J., 1(1), 1-31.
  18. Zhao, H. and Aluru, N. R. (2008), "Molecular dynamics simulation of bulk silicon under strain", Interaction and Multiscale Mechanics, An Int. J., 1(2), 303-315. https://doi.org/10.12989/imm.2008.1.2.303
  19. Zimmerman, J. A., Kelchner, C. L., Klein, P. A., Hamilton, J. C. and Foiles, S. M. (2001), "Surface step effects on nanoindentation", J. Appl. Phy., 89(1), 99-104. https://doi.org/10.1063/1.1328406

Cited by

  1. Energy and force transition between atoms and continuum in quasicontinuum method vol.7, pp.1, 2014, https://doi.org/10.12989/imm.2014.7.1.543
  2. Influence of indenter shape on nanoindentation: an atomistic study vol.6, pp.3, 2013, https://doi.org/10.12989/imm.2013.6.3.301
  3. Elastic layer under axisymmetric indentation and surface energy effects vol.69, pp.2, 2018, https://doi.org/10.1007/s00033-018-0925-x
  4. The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams vol.2, pp.3, 2008, https://doi.org/10.12989/imm.2009.2.3.223
  5. Surface elasticity and residual stress effect on the elastic field of a nanoscale elastic layer vol.4, pp.2, 2008, https://doi.org/10.12989/imm.2011.4.2.085
  6. Surface wettability and contact angle analysis by dissipative particle dynamics vol.5, pp.4, 2012, https://doi.org/10.12989/imm.2012.5.4.399