References
- Aagaah, M.R., Mahinfalah, M. and Jazar, G.N. (2003), "Linear static analysis and finite element modeling for laminated composite plates using third order shear deformation theory", Comp. Struct., 62, 27-39 https://doi.org/10.1016/S0263-8223(03)00081-3
-
Abdalla,
$F^{\circ}$ JE Qualitative and Discretization Error Analysis of Laminated Composite Plate Models. Ph.D. Dissertation (1992), University of Colorado, Boulder, CO. -
Abdalla,
$F^{\circ}$ JE and Dow, J.O. (1994), "An error analysis approach for laminated composite plate finite element models", Comput. Struct., 52(4), 611-616 https://doi.org/10.1016/0045-7949(94)90343-3 - Ahamad, S., Irons, B.M. and Zienkiewicz, O.C. (1970), "Analysis of thick and thin shell structures by curved finite elements", Int. J. Numer. Meth. Eng., 2, 419-451 https://doi.org/10.1002/nme.1620020310
- Bathe, K.J. and Dvorkin, E. (1985), "A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation", Int. J. Numer. Meth. Eng., 21, 367-383 https://doi.org/10.1002/nme.1620210213
- Bose, P. and Reddy, J.N. (1998), "Analysis of composite plates using various plate theories, Part 1: Formulation and analytical solutions", Struct. Eng. Mech., 6(6), 583-612 https://doi.org/10.12989/sem.1998.6.6.583
- Bose, P. and Reddy, J.N. (1998), "Analysis of composite plates using various plate theories, Part 2: Finite element model and numerical results", Struct. Eng. Mech., 6(7), 727-746 https://doi.org/10.12989/sem.1998.6.7.727
- Botello, S., Onate, E. and Canet, J.M. (1999), "A layer-wise triangle for analysis of laminated composite plates and shells", Comput. Strucut., 70, 635-646 https://doi.org/10.1016/S0045-7949(98)00165-5
- Brank, B. and Carrera, E. (2000), "A family of shear-deformable shell finite elements for composite structures", Comput. Strucut., 76, 287-297 https://doi.org/10.1016/S0045-7949(99)00153-4
- Dow, J.O. (1999), A Unified Approach to the Finite Element Method and Error Analysis Procedures, Academic Press, San Diego, CA
-
Dow, J.O. and Abdalla,
$F^{\circ}$ JE (1994), "Qualitative errors in laminated composite plate models", Int. J. Numer. Meth. Eng., 37, 1215-1230 https://doi.org/10.1002/nme.1620370707 - Dow, J.O. and Byrd, D.E. (1988), "The identification and elimination of artificial stiffening errors in finite elements", Int. J. Numer. Meth. Eng., 26, 743-762 https://doi.org/10.1002/nme.1620260316
- Dow, J.O. and Byrd, D.E. (1990), "Error estimation procedure for plate bending elements", AIAA J., 28, 685-693 https://doi.org/10.2514/3.10447
- Dow, J.O., Feng, C.C., Su, S.Z. and Bodley, C.S. (1985), "An equivalent continuum representation of structures composed of repeated elements", AIAA J., 23, 1564-1569 https://doi.org/10.2514/3.9124
- Dow, J.O., Ho, T.H. and Cabiness, H.D. (1985), "A generalized finite element evaluation procedure", J. Struct. Eng., ASCE, 111(2), 435-452 https://doi.org/10.1061/(ASCE)0733-9445(1985)111:2(435)
- Dow, J.O. and Huyer, S.A. (1989), "Continuum models of space station structures", J. Aerospace Eng., ASCE, 2(4), 212-230
- Ghugal, Y.M. and Shimpi, R.P. (2002), "A review of refined shear deformation theories of isotropic and anisotropic laminated plates", J. Reinf. Plast. Comp., 21(9), 775-805 https://doi.org/10.1177/073168402128988481
- Hughes, T.J.R., Cohen, M. and Haroun, M. (1978), "Reduced and selective integration techniques in finite element analysis of plates", Nuclear Eng. Des., 46, 203-222 https://doi.org/10.1016/0029-5493(78)90184-X
- Hughes, T.J.R., Taylor, R.L. and Kanoknukulchai, W. (1977), "A simple and efficient finite element for plate bending", Int. J. Numer. Meth. Eng., 11, 1529-1543 https://doi.org/10.1002/nme.1620111005
- Lo, K.H., Cristensen, R.M. and Wu, E.M. (1977), "A high-order theory of plate deformation, Part 1: Homogeneous plates", J. Appl. Mech., 44(4), 663-668 https://doi.org/10.1115/1.3424154
- Lo, K.H., Cristensen, R.M. and Wu, E.M. (1977), "A high-order theory of plate deformation, Part 2: Laminated plates", J. Appl. Mech., 44(4), 669-676 https://doi.org/10.1115/1.3424155
- Prathap, G. (1997), "A field-consistency approach to plate elements", Struct. Eng. Mech., 5(6), 853-865 https://doi.org/10.12989/sem.1997.5.6.853
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed., CRC Press, Boca Raton, FL
- Reddy, J.N. (1989), "On refined computational models of composite laminates", Int. J. Numer. Meth. Eng., 27, 361-382 https://doi.org/10.1002/nme.1620270210
- Reddy, J.N. and Averill, R.C. (1991), "Advances in the modelling of laminated plates", Comput. Syst. Eng., 2(5/6), 541-555 https://doi.org/10.1016/0956-0521(91)90056-B
- Reddy, J.N. and Wang, C.M. (2000), "An overview of the relationships between solutions of the classical and shear deformation plate theories", Comp. Sci. Tech., 60, 2327-2335 https://doi.org/10.1016/S0266-3538(00)00028-2
- Sheikh, A.H. and Chakrabarti, A. (2003), "A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates", Finite Elem. Anal. Design, 39, 883-903 https://doi.org/10.1016/S0168-874X(02)00137-3
- Singh, G. and Rao, G.V. (1995), "A discussion on simple third-order theories and elasticity approaches for flexure of laminated plates", Struct. Eng. Mech., 3(2), 121-133 https://doi.org/10.12989/sem.1995.3.2.121
- Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Meth. Eng., 3, 275-290 https://doi.org/10.1002/nme.1620030211
Cited by
- On a Four-Node Quadrilateral Plate for Laminated Composites vol.14, pp.12, 2017, https://doi.org/10.1590/1679-78253663
- A serendipity plate element free of modeling deficiencies for the analysis of laminated composites vol.154, 2016, https://doi.org/10.1016/j.compstruct.2016.07.042
- Modeling Deficiencies in the Eight-Node Mindlin Plate Finite Element Physically Explained vol.146, pp.2, 2008, https://doi.org/10.1061/(asce)em.1943-7889.0001715