논 토양 인산가용화세균에 대한 개량제 시용효과

Effects of Amendments on the Phosphate-solubilizing Bacteria in Rice Paddy Soils

  • 서장선 (농촌진흥청 국립농업과학원) ;
  • 노형준 (농촌진흥청 국립농업과학원) ;
  • 권장식 (농촌진흥청 국립농업과학원)
  • 투고 : 2008.09.01
  • 심사 : 2008.09.30
  • 발행 : 2008.10.30

초록

미생물에 의해 분비되는 유기산에 의해 난용성 인산염이 가용화되어 토양 용액 중으로 확산되면 식물 혹은 다른 미생물이 이용할 수 있게 된다. 본 연구는 논 토양을 대상으로 볏짚 퇴비, 석회, 규산 등의 개량제가 토양 인산 가용화균의 생태에 미치는 영향을 조사하였다. 인산가용화 균의 비율이 증가할 수록 토양의 유효인산 함량이 높아지는 경향을 보였다. 논 토양 호기성 세균에 대한 인산가용화 세균의 비율은 석회, 규산 및 퇴비를 함께 시용한 처리구에서 크게 증가하였다. 논 토양에서 분리된 인산가용화 세균은 Aquaspirillum, Arthrobacter, Bacillus, Flavobacterium, Micrococcus, Micromonospora, Pseudomonas속 등이었으나 가장 많이 분리된 균은 Bacillus속이 그 다음으로는 Pseudomonas속이 우점하였다.

Phosphate soubilized by microbes can be easily absorbed by plant as the element diffuses into soil solution. The microbes related to phosphate solubilizing activity are affected by the soil amendments such as rice straw compost, and lime. This study was performed to evaluate the effect of amendments to phosphate solubilizer in rice paddy soils. Available phosphate concentration was increased with the ratio of phosphate-solubilizing bacteria to aerobic bacteria in the rice paddy soils. The ratio was high in the plots applied with lime, silicate, and rice straw compost. Phosphate-solubilizing bacteria isolated from the soil were Aquasipirillum, Arthrobacter, Bacillus, Flavobacterium, Micrococcus and Micromonospora, Pseudomonas species. The highest dominant bacterial species was Pseudomonas, and Bacillus was followed.

키워드

참고문헌

  1. Addiscott, T. M., and D. Thomas. 2000. Tillage, mineralization and leaching: phosphate. Soil Till. Res. 53: 255-273. https://doi.org/10.1016/S0167-1987(99)00110-5
  2. Dodor, D. E., and M. A. Tabatabai. 2003. Amidohydrolases in soils as affected by cropping systems. App. Soil Ecol. 24: 73-90. https://doi.org/10.1016/S0929-1393(03)00067-2
  3. Gijsman, A. J., A. Oberson, D. K. Friesen, J.I. Sanz, and R. J. Thomas. 1997. Nurtient cycling through microbial biomass under rice-pasture rotations replacing native savana. Soil Biol. Biochem. 29: 1433-1441. https://doi.org/10.1016/S0038-0717(97)00045-X
  4. Hargreaves, P. R., P. C. Brookes, G. J. S. Ross, and P. R. Poulton. 2003. Evaluating soil microbial biomass carbon as an indicator of long-term environmental change. Soil Biol. Biochem. 35: 401-407. https://doi.org/10.1016/S0038-0717(02)00291-2
  5. Hofman, J., J. Bezchlebova, L. Dusek, L. Dolezal, L. Holoubek, P. Andel, A. Ansorgova, and S. Maly. 2003. Novel approach to monitoring of the soil biological quality. Environ. Int. 28: 771-778. https://doi.org/10.1016/S0160-4120(02)00068-5
  6. Hwangbo, H., R. D. Park, Y. W. Kim, Y. S. Rim, K. H. Park, T. H. Kim, J. S. Suh, and K. Y. Kim. 2003. 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr. Microbiol. 47: 87-92. https://doi.org/10.1007/s00284-002-3951-y
  7. Jeannotte, R., D. W. Sommerville, C. Hamel, and J. K. Whalen. 2004. A microplate assay to measure soil microbial biomass phosphorus. Biol. Fertil. Soils. 40: 201-205.
  8. Kouno, K., H. P. Lukito, and T. Ando. 1999. Minimum available N requirement for microbial biomass P formation in a regosol. Soil Biol. Biochem. 31: 797-802. https://doi.org/10.1016/S0038-0717(98)00178-3
  9. Kouno, K., J. Wu, and P. C. Brookes. 2002. Turnover of biomass C and P in soil following incorporation of glucose and ryegrass. Soil Biol. Biochem. 34: 617-622. https://doi.org/10.1016/S0038-0717(01)00218-8
  10. Lin, C. G., 1990. Agricultural chemistry of soil. In: Lin, C.G.(Ed.), The Holes, structures and cultivable peculiarly of field soil. Agriculture Press, Beijing, pp. 56-65.
  11. Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters. 170: 265-270. https://doi.org/10.1111/j.1574-6968.1983.tb00415.x
  12. Rodriguez, H., and R. Fraga, 1999, Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17:319- 339. https://doi.org/10.1016/S0734-9750(99)00014-2
  13. Schloter, M., O. Dilly, and J. C. Munch. 2003. Indicators for evaluating soil quality. Agric. Ecosyst. Environ. 98: 255-262. https://doi.org/10.1016/S0167-8809(03)00085-9
  14. Suh, J. S., S. J. Kim, H. J. Noh, J. S. Kwon, and W. K. Jung, 2007, Long-term compositing and fertilization impact on dehydrogenase-producing bacteria and dehydrogenase activity in rice paddy soil. Korean J. Soil Sci. Fert. 40(4), 229-233.
  15. Tao, G. C., S. J. Tian, M. Y. Cai, and G. H Xie. 2008, Phosphatesolubilizing and -Mineralizing abilities of bacteria isolated from soils. Pedosphere. 18(4): 515-523. https://doi.org/10.1016/S1002-0160(08)60042-9
  16. Tate, R. L. 1995. Soil microbiology. New York: Wiley.
  17. Vassilev, N., M. Toro, M. Vassileva, R. Azcon, and J. M. Barea, 1997, Rock phosphates solubilization by immobilized cells of enterobacter sp. in fermentation and soil conditions. Bioresour. Technolo. 61: 29-32.
  18. Wild, Q. 1988, Plant nutrients in soil: phosphate. In Soil conditions and plant growth, ed. A. Wild, pp 695-742. Longman Scientific and Technical, Essex.
  19. Yeon, B. Y., H. K Kwak, Y. S. Song, H. J. Jun, H. J. Cho, and C. H. Kim. Changes in rice yield and soil orgnic matter content under continued application of rice straw compost for 50 years in paddy soil. 2007. Korean J. Soil Sci. Fert. 40(6) 454-459.
  20. 농촌진흥청. 1988. 토양화학분석법. 삼미인쇄사
  21. 토양미생물연구회. 1992. 토양미생물실험법. 양현당.