중적외선 분광학을 이용한 토양 내의 질산태 질소 정량분석

Direct Determination of Soil Nitrate Using Diffuse Reflectance Fourier Transform Spectroscopy (DRIFTS)

  • 최은영 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 김경웅 (광주과학기술원 환경공학과) ;
  • 홍석영 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 김주용 (광주과학기술원 환경공학과)
  • Choe, Eunyoung (Soil & Fertilizer Management Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Kyoung-Woong (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Hong, Suk Young (Soil & Fertilizer Management Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Ju-Yong (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology)
  • 투고 : 2008.06.20
  • 심사 : 2008.08.03
  • 발행 : 2008.08.28

초록

현장에서의 토양 측정을 위해서는 전처리 과정이 짧을수록 유리하므로 최대한 처리를 하지 않은 토양 시료에 대해 질산태 질소의 측정과 그에 맞는 정량화 방법을 제안하였다. 건조 토양을 분광분석에 그대로 사용하는 경우 산란, 분산되는 빛의 양이 많고 노이즈도 증가하므로 Diffuse reflectance 모드 (Diffuse reflectance infrared Fourier transform spectroscopy: DRIFTS)로 측정하였다. 토양 자체가 나타내는 분광 피크에 의해 질산염의 피크가 가려지는 간섭효과를 보완하기 위해 DRIFTS 스펙트럼에 1차 도함수를 적용하였으며, $1500-1200cm^{-1}$ 영역에서 질산염에 의한 신호의 향상이 확인되었고, 이를 이용해 다변량 회귀분석 모델 (PLSR)을 적용하여 정량화를 수행하였다. 1차 도함수를 이용한 분석모델에서도 각기 다른 종류의 토양을 적용하였을 때 결과치의 신뢰도가 감소하는 결과가 나타났다. 대표적인 토양으로 사질 (sand), 미사질 (sandy loam), 토탄질 (peat), 점토질 (clay) 토양에 대해 각각의 스펙트럼을 특성화하여 해당되는 정량모델을 적용하였다. 그 결과 다양한 종류의 토양에 대한 정량분석의 신뢰도가 향상되었다 ($R^2$>0.95, RPD>6.0). 스펙트럼의 신호처리와 토양 특성별 정량모델의 적용을 통해 현장 시료에 가까운 상태의 토양 질산염을 보다 빠르고 간단하게 평가할 수 있을 것으로 기대되며, 향후에 보다 다양한 조건의 토양에 대해 분광학적 분석을 수행하여 라이브러리가 구축된다면 이러한 기술의 확대 적용이 가능할 것으로 사료된다.

Mid-infrared (MIR) spectroscopy, particularly Fourier transform infrared spectroscopy (FTIR), has emerged as an important analytical tool in quantification as well as identification of multi-atomic inorganic ions such as nitrate. In the present study, the possibility of quantifying soil nitrate via diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) without change of a sample phase or with least treated samples was examined. Four types of soils were spectrally characterized in terms of unique bands of soil contents and interferences with nitrate bands in the range of $2000-1000cm^{-1}$. In order to reduce the effects of soil composition on calibration model for nitrate, spectra transformed to the 1st order derivatives were used in the partial least squared regression (PLSR) model and the classification procedure associated with input soil types was involved in calibration system. PLSR calibration models for each soil type provided better performance results ($R^2$>0.95, RPD>6.0) than the model considering just one type of soil as a standard.

키워드

참고문헌

  1. Cahn, M.D., D.R. Bouldin, and M.S. Cravo. 1992. Nitrate sorption in the profile of an acid soil. Plant and Soil, 143: 179-183. https://doi.org/10.1007/BF00007871
  2. Ehsani, M.R., S.K. Upadhyaya, W.R. Fawcett, L.V. Protsailo, and D. Slaughter. 2001. Feasibility of detecting soil nitrate content using a mid-infrared technique. American Society of Agricultural Engineers 44(6) 1931-1940.
  3. Linker, R. 2004. Waveband selection for determination of nitrate in soil using mid-infrared attenuated total reflectance spectroscopy. Applied Spectroscopy 58(11): 1277-1281. https://doi.org/10.1366/0003702042475394
  4. Linker, R., I. Shmulevich, A. Kenny, and A. Shaviv. 2005. Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy. Chemosphere 61(5): 652-658. https://doi.org/10.1016/j.chemosphere.2005.03.034
  5. Linker, R., M. Weiner, I. Shmulevich, and A. Shaviv. 2006. Nitrate Determination in Soil Pastes using Attenuated Total Reflectance Mid-infrared Spectroscopy: Improved Accuracy via Soil Identification. Biosystems Engineering 94(1): 111-118. https://doi.org/10.1016/j.biosystemseng.2006.01.014
  6. Niemeyer, J., Y. Chen, and J.-M. Bollag. 1992. Characterization of humic acids, composts, and peat by diffuse reflectance Fouriertransform infrared spectroscopy. Soil Science Society of America Journal 56(1): 135-140. https://doi.org/10.2136/sssaj1992.03615995005600010021x
  7. Roy, W.R., and I.G. Krapac. 2006. Potential soil cleanup objectives for nitrogen-containing fertilizers at agrichemical facilities. Soil & Sediment Contamination 15: 241-251. https://doi.org/10.1080/15320380600646274
  8. Savitzky, A., and M.J.E. Golay. 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 36 (8): 1627-1639. https://doi.org/10.1021/ac60214a047
  9. Shaviv, A., A. Kenny, I. Shmulevitch, L. Singher, Y. Raichlin, and A. Katzir. 2003. Direct monitoring of soil and water nitrate by FTIR based FEWS or membrane systems. Environmental Science and Technology 37(12): 2807-2812. https://doi.org/10.1021/es020885+
  10. Van Groenigen, J.W., C.S. Mutters, W.R. Horwath, and C. Van Kessel. 2003. NIR and DRIFT-MIR spectrometry of soils for predicting soil and crop parameters in a flooded field. Plant and Soil, 250(1): 155-165. https://doi.org/10.1023/A:1022893520315
  11. Verma, S.K., and M.K. Deb. 2007. Nondestructive and rapid determination of nitrate in soil, dry deposits and aerosol samples using KBr-matrix with diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS). Analytica Chimica Acta 582 (2): 382-389. https://doi.org/10.1016/j.aca.2006.09.020