Useful Corrosion - Potential of Magnesium Alloys as Implants

  • Kaya, A. Arslan (TUBITAK-MAC, Materials Institute) ;
  • Kaya, R. Alper (Sisli Etfal State Hospital, Clinic of Neurosurgery) ;
  • Witte, Frank (Hannover) ;
  • Duygulu, Ozgur (TUBITAK-MAC, Materials Institute)
  • Published : 2008.06.01

Abstract

Degradable implants have been in use for bone surgery for decades. However, degradable metal implants are one of the new research areas of biomaterials science. Magnesium has good biocompatibility due to its low toxicity, and it is a corroding, i.e. dissolvable, metal. Furthermore, magnesium is needed in human body, and naturally found in bone tissue. There have been some published reports also asserting the potential bone cell activation or bone healing effect of high magnesium ion concentrations. The classic method for achieving intertransverse process fusion involves autogenous iliac crest bone graft. Several investigations have been performed to enhance this type of autograft fusion. However, there is no research which has been undertaken to investigate the efficiency of pure magnesium particles in posterolateral spinal fusion. In this study, corrosion behavior of magnesium metal at the bone interface, the possibility of new bone cell formation and the degree of effectiveness in producing intertransverse process lumbar fusion in a sheep model have been investigated. Cortical bone screws were machined from magnesium alloy AZ31 extruded rod and implanted to hip-bones of sheep via surgery. Three months after surgery, the bone segments carrying these screws were removed from the sacrificed animals. Samples were sectioned to reveal Mg/bone interfaces and investigated using optical microscope, SEM-EDS and radiography. Optical and SEM images showed that there was a significant amount of corrosion on the magnesium screw. The elemental mapping results indicate, due to the presence of calcium and phosphorus elements, that there exists new bone formation at the interface. Furthermore, sixteen sheep were subjected to intertransverse process spinal fusions with pedicle screw fixation at various locations along their spines. Each animal was treated with 5cc autograft bone at one fusion level and 1cc magnesium+5cc autograft bone at the other. Six months after surgery, bone formation was evaluated by gross inspection and palpation, and radiological, histological, scanning electron microscopic and x-ray diffraction analyses. It may be stated that the potential for using useful corrosion of magnesium alloys in medical applications is expected to be significant.

Keywords

References

  1. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth, and H. Windhagen, Biomaterials, 26, 3557 (2005) https://doi.org/10.1016/j.biomaterials.2004.09.049
  2. M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, Biomaterials, 27, 1728 (2006) https://doi.org/10.1016/j.biomaterials.2005.10.003
  3. F. Witte, J. Fischer, J. Nellesen, H. A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen, Biomaterials, 27, 1013 (2006) https://doi.org/10.1016/j.biomaterials.2005.07.037
  4. B. Denkena, F. Witte, C. Podolsky, and A. Lucas, Proc. of 5th Euspen International Conference (2005)
  5. B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, and A. Haverich, Heart, 89, 651 (2003) https://doi.org/10.1136/heart.89.6.651
  6. P. Zartner, R. Cesnjevar, H. Singer, and M. Weyand, Catheterization and Cardiovascular Interventions, 66, 590 (2005) https://doi.org/10.1002/ccd.20520
  7. S. D. Boden, GJ Jr Martin, M. A. Morone, J. L. Ugbo, and P. A. Moskovitz, Spine, 24, 1179 (1999) https://doi.org/10.1097/00007632-199906150-00002
  8. S. D. Boden, J. H. Schimandle, and W. C. Hutton, J Bone Joint Surg. Am, 77, 1404 (1995) https://doi.org/10.2106/00004623-199509000-00017
  9. S. D. Cook, J. E. Dalton, A. B. Prewett, Whitecloud TS III, Spine, 20, 877 (1995) https://doi.org/10.1097/00007632-199504150-00002
  10. S. E. Emery, D. A. Fuller, A. David, S. Stevenson, Spine, 21, 2713 (1996) https://doi.org/10.1097/00007632-199612010-00003
  11. J. N. Grauer, T. C. Patel, J. S. Erulkar, N. W. Troiano, M. M. Panjabi, and G. E. Friedlaender, Spine, 26, 127 (2001) https://doi.org/10.1097/00007632-200101150-00004
  12. T. Kai, G. Shao-qing, and D. Geng-ting, Spine, 28, 1653 (2003) https://doi.org/10.1097/00007632-200308010-00005
  13. D. H. Kim, T. A. Jahng, T. S. Fu, H. Y. Zhang, and S. A. Novak, Spine, 29, 2800 (2004) https://doi.org/10.1097/01.brs.0000148155.79353.ac
  14. R. Z. LeGeros, Clin Orthop Relat Res, 395, 81 (2002) https://doi.org/10.1097/00003086-200202000-00009
  15. T. S. Lindholm, P. Ragni, and T. C. Lindholm, Clin Orthop Relat Res, 230, 296 (1988)
  16. J. Long, S. Lewis, T. Kuklo, Y. Zhu, and D. Riew, J Bone Joint Surg Am, 84, 1763 (2002) https://doi.org/10.2106/00004623-200210000-00004
  17. M. A. Morone and S. D. Boden, Spine, 23, 159 (1998) https://doi.org/10.1097/00007632-199801150-00003
  18. G. F. Muschler, B. Huber, T. Ullman, R. Barth, K. Easley, J. O. Otis, J Orthop Res, 11, 514 (1993) https://doi.org/10.1002/jor.1100110406
  19. B. Peterson, P. G. Whang, R. Iglesias, J. C. Wang, and J. R. Lieberman, J Bone Joint Surg Am, 86, 2243 (2004) https://doi.org/10.2106/00004623-200410000-00016
  20. P. Ragni, T. S. Lindholm, and T. C. Lindholm, Ital J Orthop Traumatol, 13, 241 (1987)
  21. W. R. Sassard, D. K. Eidman, and P. M. Gray, Orthop Trans, 18, 886 (1994)
  22. A. Lambotte, Bull Mem Soc Nat Chir, 28, 1325 (1932)
  23. R. A. Kaya, H. Çavuşoğlu, C. Tanık, A. A. Kaya, Ö. Duygulu, Z. Mutlu, E. Zengin, and Y. Aydın, J Neurosurg Spine, 6, 141 (2007) https://doi.org/10.3171/spi.2007.6.2.141
  24. S. R. Kim, J. H. Lee, Y. T. Kim, D. H. Riu, S. J. Jung, and Y. J. Lee, Biomaterials, 24, 1389 (2003) https://doi.org/10.1016/S0142-9612(02)00523-9
  25. P. A. Revell, E. Damien, X. S. Zhang, P. Evans, and C. R. Howlett, Key Eng Mater, 254-256, 447 (2004) https://doi.org/10.4028/www.scientific.net/KEM.254-256.447
  26. C. M. Serre, M. Papillard, P. Chavassieux, J. C. Voegel, and G Boivin, J Biomed Mater Res, 42, 626 (1998) https://doi.org/10.1002/(SICI)1097-4636(19981215)42:4<626::AID-JBM20>3.0.CO;2-S
  27. Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Uchida, and T. Kubo, J Biomed Mater Res, 62, 99 (2002) https://doi.org/10.1002/jbm.10220
  28. H. Zreiqat, C. R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, and C. Knabe, J Biomed Mater Res, 62, 175 (2002) https://doi.org/10.1002/jbm.10270
  29. M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, Biomaterials, 27, 1728 (2006) https://doi.org/10.1016/j.biomaterials.2005.10.003
  30. E. D. McBride, J Am Med Assoc, 111, 2464 (1938) https://doi.org/10.1001/jama.1938.02790530018007
  31. V. V. Troitskii and D. N. Tsitrin, Khirurgiia, 8, 41 (1944)
  32. M. S. Znamenskii, Khirurgiia, 12, 60 (1945)