Abstract
Let $f=(f_n)$ be a nonnegative submartingale such that ${\parallel}f{\parallel}{\infty}{\leq}1\;and\;g=(g_n)$ be a martingale, adapted to the same filtration, satisfying $${\mid}d_{gn}{\mid}{\leq}{\mid}df_n{\mid},\;n=0,\;1,\;2,\;....$$ The paper contains the proof of the sharp inequality $$\limits^{sup}_ n\;\mathbb{E}{\Phi}({\mid}g_n{\mid}){\leq}{\Phi}(1)$$ for a class of convex increasing functions ${\Phi}\;on\;[0,\;{\infty}]$, satisfying certain growth condition. As an application, we show a continuous-time version for stochastic integrals and a related estimate for smooth functions on Euclidean domain.