DEFINABLE C^r FIBER BUNDLES AND DEFINABLE C^rG VECTOR BUNDLES

Tomohiro Kawakami

ABSTRACT. Let G and K be compact subgroups of orthogonal groups and $0 \le r < \infty$. We prove that every topological fiber bundle over a definable C^r manifold whose structure group is K admits a unique strongly definable C^r fiber bundle structure up to definable C^r fiber bundle isomorphism.

We prove that every G vector bundle over an affine definable C^rG manifold admits a unique strongly definable C^rG vector bundle structure up to definable C^rG vector bundle isomorphism.

1. Introduction

J. Bochnak, M. Coste and M. F. Roy proved that every topological vector bundle over a semialgebraic set admits a unique semialgebraic vector bundle structure up to semialgebraic vector bundle isomorphism (12.7.8. [1]). They also proved that any topological vector bundle over an affine Nash manifold admits a unique strongly Nash vector bundle structure up to Nash vector bundle isomorphism (12.7.14. [1]). The proof of 12.7.14. [1] also showed that every semialgebraic vector bundle over an affine Nash manifold admits a unique strongly Nash vector bundle structure up to Nash vector bundle isomorphism. An equivariant version of 12.7.8 [1] is studied in [2] and an equivariant C^{∞} version of 12.7.14 [1] is studied in [8].

Let $\mathcal{M} = (\mathbb{R}, +, \cdot, <, \ldots)$ be an o-minimal expansion of the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ of the field of real numbers. The term "definable" means "definable with parameters in \mathcal{M} ". Many results in semialgebraic geometry over \mathcal{R} hold true in the more general setting of o-minimal expansions of \mathcal{M} . This theory of o-minimal structures has presented a strong interest since A. Wilkie [25] proved that $\mathbf{R}_{\exp} = (\mathbb{R}, <, +, \cdot, \exp)$ is o-minimal. See also [5], [7], [19] for other examples and constructions of o-minimal expansions of the field of reals. General references on o-minimal structures are [4], [6], see also

Received October 26, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 14P10, 14P20, 57S10, 57S15, 58A05, 58A07, 03C64.

Key words and phrases. O-minimal, definable groups, definable C^r groups, definable fiber bundles, definable C^r fiber bundles, definable G vector bundles, definable C^rG vector bundles.

[22]. It is known in [21] that there exist uncountably many o-minimal expansions of \mathcal{R} . Any definable category is a generalization of the semialgebraic category and the definable category on \mathcal{R} coincides with the semialgebraic one,

Let G and K be compact subgroups of orthogonal groups. In this paper G and K denote such groups unless otherwise stated. Then they are compact algebraic groups (p.133 [20]). Hence it is definable. Everything is considered in \mathcal{M} , all definable maps are assumed to be continuous and $0 \le r < \infty$ unless otherwise stated. In this paper we prove that every topological fiber bundle over a definable C^r manifold whose structure group is K admits a unique strongly definable C^r fiber bundle structure up to definable C^r fiber bundle isomorphism. Moreover we prove that every G vector bundle over an affine definable C^rG manifold admits a unique strongly definable C^rG vector bundle structure up to definable C^rG vector bundle isomorphism.

Definable fiber bundles, principal definable fiber bundles, definable C^r manifolds, definable C^r fiber bundles and principal definable C^r fiber bundles are studied in [10], [12], [14], [15].

By the construction (19.6 [24]) of the *n*-universal principal bundle $\mathcal{B}_K = (B_K, p_K, X_K)$ relative to K, it is a Nash fiber bundle and E_K and X_K are compact affine Nash manifolds. Let F be an affine definable C^r manifold with an effective definable C^rK action. Then by Proposition 2.7, the associated fiber bundle $\mathcal{B}_K[F] := (E, p, X_K, F, K)$ is a definable C^r fiber bundle. A definable C^r fiber bundle $\eta = (E, p, X, F, K)$ is strongly definable if there exist some $\mathcal{B}_K = (B_K, p_K, X_K)$ and a definable C^r map $f: X \to X_K$ such that η is definably C^r fiber bundle isomorphic to $f^*(\mathcal{B}_K[F])$. Strongly definable fiber bundles are defined similarly.

Theorem 1.1. Let $\eta = (E, p, X, F, K)$ be a strongly definable fiber bundle over a compact definable C^r manifold.

- (1) There exists a strongly definable C^r fiber bundle ζ over X such that ζ is definably fiber bundle isomorphic to η .
- (2) If ζ' is another strongly definable C^r fiber bundle over X such that ζ' is definably fiber bundle isomorphic to η , then ζ' and ζ are definably C^r fiber bundle isomorphic.

In particular, (1) and (2) say that η admits a unique definable C^r fiber bundle structure up to definable C^r fiber bundle isomorphism.

Theorem 1.2. Let $\eta = (E, p, X, F, K)$ be a fiber bundle over a definable set.

- (1) There exists a strongly definable fiber bundle ζ over X such that ζ is fiber bundle isomorphic to η .
- (2) If ζ' is another strongly definable fiber bundle over X such that ζ' is fiber bundle isomorphic to η , then ζ' and ζ are definably fiber bundle isomorphic.

In particular, (1) and (2) say that η admits a unique definable fiber bundle structure up to definable fiber bundle isomorphism.

Corollary 1.3. Let $\eta = (E, p, X, F, K)$ be a fiber bundle over a definable C^r manifold.

- (1) There exists a strongly definable C^r fiber bundle ζ over X such that ζ is fiber bundle isomorphic to η .
- (2) If ζ' is another strongly definable C^r fiber bundle over X such that ζ' is fiber bundle isomorphic to η , then ζ' and ζ are definably C^r fiber bundle isomorphic.

In particular, (2) and (3) say that η admits a unique definable C^r fiber bundle structure up to definable C^r fiber bundle isomorphism.

We next consider definable C^rG vector bundle versions of the above results. Strongly definable C^rG vector bundles and strongly definable G vector bundles are defined similarly (see Definition 3.2).

Theorem 1.4. Let $\eta = (E, p, X)$ be a definable G vector bundle over an affine definable C^rG manifold X.

- (1) [1.2 [10]] η is strongly definable.
- (2) There exists a strongly definable C^rG vector bundle ζ over X such that ζ is definably G vector bundle isomorphic to η .
- (3) If ζ' is another strongly definable C^rG vector bundle over X such that ζ' is definably G vector bundle isomorphic to η , then ζ' and ζ are definably C^rG vector bundle isomorphic.

In particular, (2) and (3) say that η admits a unique definable C^rG vector bundle structure up to definable C^rG vector bundle isomorphism.

Theorem 1.5 (1.3 [10]). Let X be a definable G set. Then every G vector bundle over X admits a unique definable G vector bundle structure up to definable G vector bundle isomorphism.

We have the following result as a corollary of Theorem 1.4 and 1.5.

Corollary 1.6. Let $\eta = (E, p, X)$ be a G vector bundle over an affine definable C^rG manifold.

- (1) There exists a strongly definable C^rG vector bundle ζ over X such that ζ is G vector bundle isomorphic to η .
- (2) If ζ' is another strongly definable C^rG vector bundle over X such that ζ' is G vector bundle isomorphic to η , then ζ' and ζ are definably C^rG vector bundle isomorphic.

In particular, (1) and (2) say that η admits a unique strongly definable C^rG vector bundle structure up to definable C^r vector bundle isomorphism.

2. Definable fiber bundles and definable C^r fiber bundles

A definable set means a definable subset of some \mathbb{R}^n . A group G is a definable group if G is a definable set such that the group operations $G \times G \to G$ and

 $G \to G$ are definable. Let G be a definable group. A definable G action on a definable set X is a group action $G \times X \to X$ such that it is definable.

A definable space is an object obtained by pasting finitely many definable sets together along definable open subsets, and definable maps between definable spaces are defined similarly (see Chapter 10 [4]). Definable spaces are generalizations of semialgebraic spaces in the sense of [3].

Recall the definition of definable fiber bundles [14].

- **Definition 2.1.** (1) A topological fiber bundle $\eta = (E, p, X, F, L)$ is called a definable fiber bundle over X with fiber F and structure group L if the following two conditions are satisfied:
 - (a) The total space E is a definable space, the base space X is a definable set, the structure group L is a definable group, the fiber F is a definable set with an effective definable L action, and the projection $p: E \to X$ is a definable map.
 - (b) There exists a finite family of local trivializations $\{U_i, \phi_i : p^{-1}(U_i) \to U_i \times F\}_i$ of η such that each U_i is a definable open subset of X, $\{U_i\}_i$ is a finite open covering of X. For any $x \in U_i$, let

$$\phi_{i,x}: p^{-1}(x) \to F, \phi_{i,x}(z) = \pi_i \circ \phi_i(z),$$

where π_i stands for the projection $U_i \times F \to F$. For any i and j with $U_i \cap U_j \neq \emptyset$, the transition function $\theta_{ij} := \phi_{j,x} \circ \phi_{i,x}^{-1} : U_i \cap U_j \to L$ is a definable map. We call these trivializations definable.

Definable fiber bundles with compatible definable local trivializations are identified.

- (2) Let $\eta = (E, p, X, F, L)$ and $\zeta = (E', p', X', F, L)$ be definable fiber bundles whose definable local trivializations are $\{U_i, \phi_i\}_i$ and $\{V_j, \psi_j\}_j$, respectively. A definable map $\overline{f}: E \to E'$ is said to be a definable fiber bundle morphism if the following two conditions are satisfied:
 - (a) The map \overline{f} covers a definable map, namely there exists a definable map $f: X \to X'$ such that $f \circ p = p' \circ \overline{f}$.
 - (b) For any i, j such that $U_i \cap f^{-1}(V_j) \neq \emptyset$ and for any $x \in U_i \cap f^{-1}(V_j)$, the map $f_{ij}(x) := \psi_{j,f(x)} \circ \overline{f} \circ \phi_{i,x}^{-1} : F \to F$ lies in L, and $f_{ij}: U_i \cap f^{-1}(V_j) \to L$ is a definable map.

We say that a bijective definable fiber bundle morphism $\overline{f}: E \to E'$ is a definable fiber bundle equivalence if it covers a definable homeomorphism $f: X \to X'$ and $(\overline{f})^{-1}: E' \to E$ is a definable fiber bundle morphism covering $f^{-1}: X' \to X$. A definable fiber bundle equivalence $\overline{f}: E \to E'$ is called a definable fiber bundle isomorphism if X = X' and $f = id_X$.

(3) A continuous section $s: X \to E$ of a definable fiber bundle $\eta = (E, p, X, F, L)$ is a definable section if for any i, the map $\phi_i \circ s|U_i: U_i \to U_i \times F$ is a definable map.

(4) We say that a definable fiber bundle $\eta = (E, p, X, F, L)$ is a principal definable fiber bundle if F = L and the L action on F is defined by the multiplication of L. We write (E, p, X, L) for (E, p, X, F, L).

A definable C^r manifold is a C^r manifold with a finite system of charts whose transition functions are definable, and definable C^r maps, definable C^r diffeomorphisms and definable C^r imbeddings are defined similarly ([12], [15]). A definable C^r manifold is affine if it is definably C^r imbeddable into some \mathbb{R}^n . If $\mathcal{M} = \mathcal{R}$, a definable C^{ω} manifold (resp. affine definable C^{ω} manifold) is called a Nash manifold (resp. an affine Nash manifold). By [13], every definable C^r manifold is affine. The definable C^{ω} case is complicated. Even if $\mathcal{M} = \mathcal{R}$, it is known that for every compact or compactifiable C^{ω} manifold of positive dimension admits a continuum number of distinct nonaffine Nash manifold structures (IV.1.3 [23]), and its equivariant version is proved in [16].

A definable C^rG action on a definable C^r manifold X is a group action $G \times X \to X$ such that it is a definable C^r map.

Recall the definition of definable C^r fiber bundles [12].

- **Definition 2.2** ([12]). (1) A definable fiber bundle $\eta = (E, p, X, F, L)$ is a definable C^r fiber bundle if the total space E and the base space X are definable C^r manifolds, the structure group L is a definable C^r group, the fiber E is a definable E^r manifold with an effective action, the projection E is a definable E^r map and all transition functions of E are definable E^r maps. A principal definable E^r fiber bundle is defined similarly.
 - (2) Definable C^r fiber bundle morphisms, definable C^r fiber bundle equivalences, definable C^r fiber bundle isomorphisms between definable C^r fiber bundles and definable C^r sections of a definable C^r fiber bundle are defined similarly.

Let $f: X \to Y$ be a definable map between definable sets. We say that f is proper if for any compact subset C of Y, $f^{-1}(C)$ is compact.

Let E be an equivalence relation on a definable set X. We call E proper if E is a definable subset of $X \times X$ and the projection $E \to X$ defined by $(x,y) \mapsto x$ is proper.

Theorem 2.3 (Definable quotients (e.g. 10.2.15 [4])). Let E be a proper equivalence relation on a definable set X. Then X/E exists as a proper quotient, namely X/E is a definable subset of some \mathbb{R}^n and the projection $X \to X/E$ is a surjective proper definable map.

The following is a corollary of Theorem 2.3.

Corollary 2.4 (e.g. 10.2.18 [4]). Let X be a definable set with a definable G action. Then X/G is a definable subset of some \mathbb{R}^n and the orbit map $p: X \to X/G$ is a surjective proper definable map.

By a similar proof of 2.10 [17] and Corollary 2.4, we have the following.

Proposition 2.5. Let (E, p, X, K) be a principal definable fiber bundle and F a definable set with an effective definable K action. Then $(E \times_K F, p', X, F, K)$ is a definable fiber bundle, where $p' : E \times_K F \to X$ denotes the projection defined by p'([z, f]) = p(z).

We have the definable C^r version of Proposition 2.5 similarly.

Proposition 2.6. Let (E, p, X, K) be a principal definable C^r fiber bundle over a definable C^r manifold X, F an affine definable C^r manifold with an effective definable C^rK action. Then $(E \times_K F, p', X, F, K)$ is a definable C^r fiber bundle, where $p': E \times_K F \to X$ denotes the projection defined by p'([z, f]) = p(z).

As a corollary of Proposition 2.6, we have the following proposition.

Proposition 2.7. Let $\mathcal{B}_K = (B_K, p_K, X_K)$ be the n-universal principal bundle relative to K, F an affine definable C^r manifold with an effective definable C^rK action. Then the associated fiber bundle $\mathcal{B}_K[F] := (E, p, X_K, F, K)$ is a definable C^r fiber bundle.

Definition 2.8. A definable C^r fiber bundle (E, p, X, F, K) over a definable C^r manifold X is strongly definable if there exists a definable C^r map $f: X \to X_K$ such that η is definably C^r fiber bundle isomorphic to $f^*(\mathcal{B}_K[F])$. Strongly definable fiber bundles are defined similarly.

Strongly definable C^r fiber bundles have the following extension property.

Proposition 2.9. Let $\eta = (E, p, X, F, K)$ be a definable C^r fiber bundle over a definable C^r manifold X in \mathbb{R}^n . Then η is strongly definable if and only if there exists a strongly definable C^r fiber bundle η' over a definable C^r manifold Y such that $X \subset Y$ and η is definably C^r fiber bundle isomorphic to $\eta'|X$.

To prove the above proposition, we need existence of a Nash tubular neighborhood of an affine Nash manifold in \mathbb{R}^l . For later use, we state a definable C^r version of it.

Proposition 2.10 ([9], [11], [15]). Let $0 \le r \le \omega$. Then every definable C^r submanifold X of \mathbb{R}^l has a definable C^r tubular neighborhood (U, θ) of X in \mathbb{R}^l , namely U is a definable open neighborhood of X in \mathbb{R}^l and $\theta: U \to X$ is a definable C^r map with $\theta|X = id_X$.

Proof of Proposition 2.9. Assume that η is strongly definable. By the hypothesis, there exists a definable C^r map $f: X \to X_K$ such that η is definably C^r fiber bundle isomorphic to $f^*(\mathcal{B}_K[F])$. We may assume that X_K is a definable C^r submanifold of \mathbb{R}^p and $j=(i,f):X\to\mathbb{R}^{n+p}$ is a definable C^r imbedding, where $i:X\to\mathbb{R}^n$ denotes the inclusion. Identifying X with j(X), we may suppose that f is the restriction to X of the canonical projection $\pi:\mathbb{R}^{n+p}\to\mathbb{R}^p$. By Proposition 2.10, we have a definable open neighborhood A of X_K in \mathbb{R}^p with a definable C^r retraction $\theta:A\to X_K$. Thus we obtain a definable C^r manifold $U:=\pi^{-1}(A)$ in \mathbb{R}^{n+p} and a definable C^r map

 $F := \theta \circ (\pi|U) : U \to X_K$ such that F|X = f and $F^*(\mathcal{B}_K[F])$ is a strongly definable C^r fiber bundle over U.

Proposition 2.11. Let X_1, X_2 be definable C^r manifolds, η_1, η_2 principal definable C^r fiber bundles over X_1, X_2 whose structure groups are K, respectively. Let $f_1: X_1 \to X_2$ be a definable C^r map.

- (1) There exists a definable C^r fiber bundle (η_1, η_2, f) over X_1 such that its definable C^r sections are in bijective correspondence with the definable C^r fiber bundle morphisms $\eta_1 \to \eta_2$ covering f.
- (2) If η_1, η_2 are strongly definable, then (η_1, η_2, f) is strongly definable.

Proof. (1) Let $\{U_i\}$ and $\{V_h\}$ be coordinate neighborhoods of η_1 and η_2 , respectively, $\{g_{ij}^1: U_i \cap U_j \to K\}$ and $\{g_{hk}^2: V_h \cap V_k \to K\}$ cocycles of η_1 and η_2 , respectively. Then its cocycle of $f^*(\eta_2)$ is $\{g_{hk}^*:=g_{hk}^2 \circ f: f^{-1}(V_h) \cap f^{-1}(V_k) \to K\}$. The definable open sets $\{W_a:=U_i \cap f^{-1}(V_h)\}$ (a=(i,h)) is a refinement of $\{U_i\} \cup \{f^{-1}(V_h)\}$.

By construction, (η_1, η_2, f) has K as fiber and $K \times K$ as structure group, acting on K, $(k_1, k_2)k = k_1kk_2^{-1}$. A family of coordinate neighborhoods such a bundle is given by $\{W_a\}$ and a cocycle by $\{g_{ab}^1 := g_{ij}^1 | W_a \cap W_b \times g_{ab}^* := g_{hk}^* | W_a \cap W_b \to K \times K\}, a = (i, h), b = (j, k).$

Suppose that there exists a definable C^r section s of (η_1, η_2, f) . Then there exists a family $\{c_a : W_a \to K\}$ of definable C^r maps such that $c_a(x) = (g_{ab}(x), g_{ab}^*(x))c_b(x), x \in W_a \cap W_b$. Namely, $g_{ab}^*(x) = c_a^{-1}(x)g_{ab}(x)c_b(x)$. This means that η_1 and $f^*(\eta_2)$ are definable C^r fiber bundle equivalent. Then composing this equivalence with the canonical bundle map $f^*(\eta_2) \to \eta_2$, we have a definable C^r fiber bundle morphism $F: \eta_1 \to \eta_2$ covering f.

Conversely let F be a definable C^r fiber bundle morphism covering f. There exists a family $\{c_a: W_a \to K\}$ of definable C^r maps such that $g_{ab}^*(x) = c_a^{-1}(x)g_{ab}(x)c_b(x)$. Hence $c_a(x) = (g_{ab}(x), g_{ab}^*(x))c_b(x), x \in W_a \cap W_b$ holds. This implies that (η_1, η_2, f) has a definable C^r section s. Since the functions $s \mapsto F$ and $F \mapsto s$ are inverse to each other, (1) is proved.

(2) By assumption, there exists a definable C^r map $h_l: X_l \to X_K$, (l=1,2) such that η_l is definably C^r fiber bundle isomorphic to $h_l^*(\mathcal{B}_K)$. Let $\{A_m\}$ be a family of coordinate neighborhoods of X_K and $\{g'_{mn}\}$ the relative cocycle. Then a cocycle of η_l is $\{g^l_{mn}:=g'_{mn}\circ h_l\}$ on the definable open covering $\{h_l^{-1}(A_m)\}$ of X_l . Consider the definable C^r fiber bundle $\mathcal{B}_K \times \mathcal{B}_K = (\mathcal{B}_K \times \mathcal{B}_K, p_K \times p_K, X_K \times X_K)$. It is universal and a cocycle on $\{A_m, \times A_m\}$ is given by $\{(g_{mn}, g_{m'n'}): (A_m \times A_{m'}) \cap (A_n \times A_{n'}) \to K \times K\}, (g_{mn}, g_{m'n'})(y, y') = (g_{mn}(y), g_{m'n'}(y'))$. If we consider the fiber bundle $(\mathcal{B}_K \times \mathcal{B}_K)[K]$ associated with $\mathcal{B}_K \times \mathcal{B}_K$ and with fiber K (the group $K \times K$ acting on K in the previous manner), then (η_1, η_2, f) is induced from it under the map $H = (h_1, h_2 \circ f): X_1 \to X_K \times X_K$.

Proposition 2.12. Let $\eta = (E, p, X, F, K)$ be a strongly definable C^r fiber bundle over a definable C^r manifold X in \mathbb{R}^m whose fiber F is a definable

 C^r manifold in \mathbb{R}^n . If η has a continuous section, then it has a definable C^r section.

To prove Proposition 2.12, we need the following definable approximation theorem.

Theorem 2.13 ([11]). If $0 \le s < r < \infty$, then every definable C^s map between definable C^r manifolds is approximated in the definable C^s topology by definable C^r maps.

Proof of Proposition 2.12. By the hypothesis, there exists a definable C^r map $f: X \to X_K$ such that η is definably C^r fiber bundle isomorphic to $f^*(\mathcal{B}_K[F])$. Moreover we can suppose that X_K is imbedded into \mathbb{R}^p .

Consider the definable C^r imbedding $\psi: X \to \mathbb{R}^{m+p}$ defined by $\psi = (id_X, f)$. Identifying X with $\psi(X)$, f is identified with the restriction to X of the canonical projection $\pi: \mathbb{R}^{m+p} \to \mathbb{R}^p$. Let A' be a definable open tubular neighborhood of X_K in \mathbb{R}^p and $\theta: A' \to X_K$ a definable C^r retraction. Thus $A := \pi^{-1}(A')$ is a definable open neighborhood of X in \mathbb{R}^{m+p} and we have a definable C^r map $H := \theta \circ (\pi|A)$. Consider the definable C^r fiber bundle $H^*(\mathcal{B}_K[F])$ over A. Then its restriction to X is definably C^r fiber bundle isomorphic to η and hence we can identify these two bundles. A section s can be identified with a section of $H^*(\mathcal{B}_K([F])|X$.

The next step is to extend s to a section defined on a definable open neighborhood U with $X \subset U \subset A$. Let $\{U_j\}_{j=1}^l$ be a finite definable open cover of X given by definable open sets of A such that the closure $\overline{U_j}$ of each U_j is contained in some coordinate neighborhood V_h of $H^*(\mathcal{B}_K[F])$. Assume that $\overline{U_1} \subset V_h$. Let $\phi_h: V_h \times F \to p^{-1}(V_h)$ be a coordinate function and $p_h: p^{-1}(V_h) \to F, p_h(b) = q \circ \phi_h^{-1}(b)$, where $q: V_h \times F \to F$ denotes the projection. Consider the function $p_h \circ s|\overline{U_1} \cap X: \overline{U_1} \cap X \to F \subset \mathbb{R}^n$. Let W be a definable C^r tubular neighborhood F of \mathbb{R}^n and $\theta': W \to F$ a definable C^r retraction.

Extend $p_h \circ s$ to a map $s_1' : \overline{U_1} \to \mathbb{R}^n$. Shrinking U_1 , if necessary, we may assume that $s_1'(\overline{U_1}) \subset W$. Thus we can define a local section of $H^*(\mathcal{B}_K[F])$ on $\overline{U_1} \cup X$ by setting

$$s_1(x) = \begin{cases} s(x), & x \in X, \\ \phi_h(x, \theta' \circ s_1'(x)), & x \in \overline{U_1}. \end{cases}$$

Continuing this process, we have a sequence $\{s_j\}$ of local sections such that $X \subset U := \bigcup_{j=1}^l U_j$, s_i is defined on $X \cup (\bigcup_{j=1}^i U_j)$ and $s_i | X \cup (\bigcup_{j=1}^{i-1} U_j) = s_{i-1}$, where $s_0 = s$. Then $\overline{s} := s_l$ is a section defined on U extending s.

Consider now the strongly definable C^r fiber bundle $H^*(\mathcal{B}_K[F])|U$, which has a continuous section \overline{s} . Using Theorem 2.13, a similar proof of III.2.3 [23] provides a definable C^r section.

Proof of Theorem 1.1. (1) Since η is strongly definable, there exist the n-universal bundle \mathcal{B}_K and a definable map $f: X \to X_K$ such that $f^*(\mathcal{B}_K[F])$ is

definably fiber bundle isomorphic to η . By Theorem 2.13, we have a definable C^r map $h: X \to X_K$ as an approximation of f. In particular h is definably homotopic to f. Since X is compact and by [14], $\zeta := h^*(\mathcal{B}_K[F])$ is definably fiber bundle isomorphic to $f^*(\mathcal{B}_K[F])$ and ζ is a strongly definable C^r fiber bundle.

(2) Let ζ' be another strongly definable C^r fiber bundle over X such that ζ' is definably fiber bundle isomorphic to η . Consider the strongly definable C^r fiber bundle (ζ, ζ', id_X) whose sections represent the fiber bundle isomorphisms between ζ and ζ' . It has a continuous section and by Proposition 2.12, it admits a definable C^r section. This section gives a definable C^r fiber bundle isomorphism between ζ and ζ' .

Theorem 2.14 (3.3 [9]). Let X be a definable set. Then there exist a compact definable subset Y of X and a definable map $\rho: X \to Y$ with $\rho|Y = id_Y$.

Proof of Theorem 1.2. (1) By Theorem 2.14, there exist a compact definable subset Y of X and a definable retraction $\rho: X \to Y$. By this fact and by [18], the sets of fiber bundle isomorphism classes of fiber bundles over X and Y coincide. Thus we may assume that X is compact at the beginning.

By 19.3 [24], there exist the n-universal bundle \mathcal{B}_K and a continuous map $f: X \to X_K$ such that $n > \dim X$ and η is fiber bundle isomorphic to $f^*(\mathcal{B}_K[F])$. Since X is compact, applying the polynomial approximation theorem, we have a polynomial map $h': X \to \mathbb{R}^n$, where $X_K \subset \mathbb{R}^n$. If this approximation is sufficiently close, h(X) is contained in a some definable open neighborhood (U, ϕ) of X_K in \mathbb{R}^n . Thus we obtain a definable map $h: X \to X_K$ approximating f. In particular h is homotopic to f. Thus η is fiber bundle isomorphic to a strongly definable fiber bundle $h^*(\mathcal{B}_K[F])$.

(2) A similar proof of Theorem 1.1 proves (2).

Proof of Corollary 1.3. (1) By Theorem 1.2 (1), there exists a strongly definable fiber bundle ζ which is fiber bundle isomorphic to η . Namely there exists a definable map $f: X \to X_K$ such that η is fiber bundle isomorphic to $f^*(\mathcal{B}_K[F])$. By Theorem 2.13, we have a definable C^r map $h: X \to X_K$ as an approximation of f. In particular, h is homotopic to f. By [18], $h^*(\mathcal{B}_K[F])$ is fiber bundle isomorphic to $f^*(\mathcal{B}_K[F])$. Thus η is fiber bundle isomorphic to a strongly definable fiber bundle $\zeta:=h^*(\mathcal{B}_K[F])$.

(2) A similar proof of Theorem 1.1 proves (2).

3. Definable G vector bundles and definable C^rG vector bundles

A representation of G means a group homomorphism from G to some $O_n(\mathbb{R})$ which is a definable C^r map and the representation space of this representation is \mathbb{R}^n with the linear action induced from the representation. In this paper, we always assume that every representation is orthogonal. A definable G set is a G invariant definable subset of a representation space of G. A definable C^rG submanifold of a representation space Ω of G is a G invariant definable

 C^r submanifold of Ω . We say that a definable C^rG manifold is affine if it is definably C^rG diffeomorphic (definably G homeomorphic if r=0) to a definable C^rG submanifold of some representation space of G.

Recall universal G vector bundles.

Definition 3.1 ([12]). Let Ω be an n-dimensional representation space of G induced by a definable C^r group homomorphism $B: G \to O_n(\mathbb{R})$. Suppose that $M(\Omega)$ denotes the vector space of $n \times n$ -matrices with the action $(g, A) \in G \times M(\Omega) \to B(g)AB(g)^{-1} \in M(\Omega)$. For any positive integer k, we define the vector bundle $\gamma(\Omega, k) = (E(\Omega, k), u, G(\Omega, k))$ as follows:

$$G(\Omega, k) = \{A \in M(\Omega) | A^2 = A, A = A', TrA = k\},$$

$$E(\Omega, k) = \{(A, v) \in G(\Omega, k) \times \Omega | Av = v\},$$

$$u : E(\Omega, k) \to G(\Omega, k), u((A, v)) = A,$$

where A' denotes the transposed matrix of A and Tr A stands for the trace of A. Then $\gamma(\Omega, k)$ is an algebraic vector bundle. Since the action on $\gamma(\Omega, k)$ is algebraic, it is an algebraic G vector bundle. We call it the universal G vector bundle associated with Ω and k. Remark that $G(\Omega, k) \subset M(\Omega)$ and $E(\Omega, k) \subset M(\Omega) \times \Omega$ are nonsingular algebraic G sets.

Definition 3.2. A definable C^rG vector bundle η over an affine definable C^rG manifold is *strongly definable* if there exist a representation space Ω of G and a definable C^rG map $f: X \to G(\Omega, k)$ such that η is definably C^rG vector bundle isomorphic to $f^*(\gamma(\Omega, k))$, where k denotes the rank of η . Similarly a strongly definable G vector bundle over a definable G set is defined.

To prove Theorem 1.4, we need the following equivariant version of Theorem 2.13.

Theorem 3.3 ([11]). If $0 \le s < r < \infty$, then every definable C^sG map between affine definable C^rG manifolds is approximated in the definable C^s topology by definable C^rG maps.

Proof of Theorem 1.4. (2) By (1), there exist a representation space Ω of G and a definable G map $f: X \to G(\Omega, k)$ such that η is definably G vector bundle isomorphic to $f^*(\gamma(\Omega, k))$, where k denotes the rank of η . By Theorem 3.3, we have a definable C^rG map $h: X \to G(\Omega, k)$ as an approximation of f. In particular, f and h are G homotopic. By [18], $f^*(\gamma(\Omega, k))$ is G vector bundle isomorphic to $h^*(\gamma(\Omega, k))$. Thus by Theorem 1.5, they are definably G vector bundle isomorphic. Therefore η is definably G vector bundle isomorphic to a strongly definable C^rG vector bundle $\zeta:=h^*(\gamma(\Omega, k))$.

(3) By a way similar to the proof of 3.1 [8], $\operatorname{Hom}(\zeta, \zeta')$ is a strongly definable C^rG vector bundle. Since ζ and ζ' are definably G vector bundle isomorphic, it gives a definable G section s of $\operatorname{Hom}(\zeta, \zeta')$. Using Theorem 3.3, by a similar proof of 3.3 [8] proves that s is approximated by a definable C^rG section s'. On the other hand, $\operatorname{Iso}(\zeta, \zeta')$ is open in $\operatorname{Hom}(\zeta, \zeta')$. If this approximation

is sufficiently close, then s' gives a definable C^rG vector bundle isomorphism between ζ and ζ' .

References

- [1] J. Bochnak, M. Coste, and M. F. Roy, Géométie algébrique réelle, Erg. der Math. und ihrer Grenzg., Springer-Verlag, Berlin Heidelberg, 1987.
- [2] M. J. Choi, T. Kawakami, and D. H. Park, Equivariant semialgebraic vector bundles, Topology Appl. 123 (2002), 383-400.
- [3] H. Delfs and M. Knebusch, Semialgebraic topology over a real closed field II: Basic theory of semialgebraic spaces, Math. Z. 178 (1981), 175–213.
- [4] L. van den Dries, Tame Topology and o-minimal Structures, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press, 1998.
- [5] L. van den Dries, A. Macintyre, and D. Marker, The elementary theory of restricted analytic field with exponentiation, Ann. Math. 140 (1994), 183-205.
- [6] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497–540.
- [7] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. **350** (1998), 4377–4421.
- [8] T. Kawakami, Algebraic G vector bundles and Nash G vector bundles, Chinese J. Math. **22** (1994), no. 3, 275–289.
- [9] _____, Definable G CW complex structures of definable G sets and their applications, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 55 (2004), 1–15.
- [10] _____, Definable G-fiber bundles and definable C^rG-fiber bundles, Sürikaisekiken-kyüsho Kōkyūroku **1343** (2003), 31–45.
- [11] _____, Equivariant definable C^r approximation theorem, definable C^rG triviality of G invariant definable C^r functions and compactifications, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. **55** (2005), 23–36.
- [12] _____, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- [13] _____, Every definable C^r manifold is affine, Bull. Korean Math. Soc. **42** (2005), no. 1, 165–167.
- [14] _____, Homotopy property for definable fiber bundles, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. **53** (2003), 1–6.
- [15] _____, Imbedding of manifolds defined on an o-minimal structures on $(\mathbb{R}, +, \cdot, <)$, Bull. Korean Math. Soc. **36** (1999), no. 1, 183–201.
- [16] _____, Nash G manifold structures of compact or compactifiable $C^{\infty}G$ manifolds, J. Math. Soc. Japan 48 (1996), 321–331.
- [17] K. Kawakubo, The Theory of Transformation Groups, Oxford Univ. Press, 1991.
- [18] R. K. Lashof, Equivariant Bundles, Illinois J. Math. 26 (1982), no. 2, 257-271.
- [19] C. Miller, Expansion of the field with power functions, Ann. Pure Appl. Logic 68 (1994), 79–94.
- [20] A. L. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups, Springer-Verlag, Berlin, 1990.
- [21] J. P. Rolin, P. Speissegger, and A. J. Wilkie, Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc. 16 (2003), 751–777.
- [22] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Math. 150 (1997), Birkhäuser.
- [23] _____, Nash Manifolds, Lecture Note in Math. 1269, Springer-Verlag, 1987.
- [24] N. Steenrod, The Topology of Fiber Bundles, Princeton University Press, 1974.
- [25] A. Wilkie, Model completeness results for expansions of the real field by restricted Pfaffian functions and exponential functions, J. Amer. Math. Soc. 9 (1996), 1051–1094.

DEPARTMENT OF MATHEMATICS
FACULTY OF EDUCATION
WAKAYAMA UNIVERSITY
SAKAEDANI WAKAYAMA 640-8510, JAPAN

 $E ext{-}mail\ address:$ kawa@center.wakayama-u.ac.jp