DOI QR코드

DOI QR Code

ON POTENT RINGS

  • Li, Bingjun (Department of Mathematics and Systems Science National University of Defense Technology Changsha)
  • 발행 : 2008.04.30

초록

A ring R is called an $I_0$-ring if each left ideal not contained in the Jacobson radical J(R) contains a non-zero idempotent. If, in addition, idempotents can be lifted modulo J(R), R is called an I-ring or a potent ring. We study whether these properties are inherited by some related rings. Also, we investigate the structure of potent rings.

키워드

참고문헌

  1. G. Azumaya, Strongly $\pi$-regular ring, J. Fac. Sci. Hokkaido Univ. 13 (1954), 34-39
  2. V. P. Camillo and H. P. Yu, Exchange rings, units and idempotents, Comm. Alg. 22 (1994), no. 12, 4737-4749 https://doi.org/10.1080/00927879408825098
  3. P. Crawley and B. Jonsson, Refinements for infinite direct decomposition of algebraic systems, Pacific. Math. 14 (1964), 797-855 https://doi.org/10.2140/pjm.1964.14.797
  4. K. R. Goodearl, von Neuman Regular Rings, Pitman, 1979
  5. C. Y. Hong, N. Y. Kim, and Y. Lee, Exchange rings and their extensions, J. Pure and Appl. Alg. 179 (2003), 117-126 https://doi.org/10.1016/S0022-4049(02)00299-2
  6. T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, 1991
  7. W. K. Nicholson, I-rings, Trans. Amer. Math. Soc. 207 (1975), 361-373 https://doi.org/10.2307/1997182
  8. W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 299 (1977), 269-278
  9. J. Stock, On rings whose projective modules have exchange property, J. Alg. 103 (1986), 437-453 https://doi.org/10.1016/0021-8693(86)90145-6
  10. R. B. Jr. Warfield, Exchange rings and deposition modules, Math. Ann. 199 (1992), 31-36
  11. H. P. Yu, On the structure of exchange rings, Comm. Alg. 25 (1997), no. 2, 661-670 https://doi.org/10.1080/00927879708825882