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THE GEOMETRY OF THE DIRICHLET MANIFOLD

FENGWEI ZHONG, HUAFEI SUN, AND ZHENNING ZHANG

ABSTRACT. In the present paper, we investigate the geometric structures
of the Dirichlet manifold composed of the Dirichlet distribution. We show
that the Dirichlet distribution is an exponential family distribution. We
consider its dual structures and give its geometric metrics, and obtain
the geometric structures of the lower dimension cases of the Dirichlet
manifold. In particularly, the Beta distribution is a 2-dimensional Dirich-
let distribution. Also, we construct an affine immersion of the Dirichlet
manifold. At last, we give the e-flat hierarchical structures and the or-
thogonal foliations of the Dirichlet manifold. All these work will enrich
the theoretical work of the Dirichlet distribution and will be great help
for its further applications.

1. Introduction

Scientific researches and human dctivities generate lots of data, sometimes
they are incomplete, redundant or erroneous, and probability methods are fairly
useful in exploiting the patterns present in these data. Dirichlet distribution
i1s the multivariate generalization of the Beta distribution, and it has many
applications in engineering, also in contrast to other distributions, it can offer
more considerable flexibility and ease of use, so it is a good choice for data
modeling.

In this paper, we will give an intensive study to the n-dimensional Dirichlet
distribution from the viewpoint of information geometry. Using the theory of
information geometry, we can solve some problems with statistical characteris-
tics. Since the set of the probability density function with parameters can be
regarded as a manifold, it is quite meaningful to give its geometric structures.

Let X = (z1,z9,...,70,-1) be an (n — 1)-variate positive random vector
satistying ¢y +---4+z,-1 < 1. The probability density function of the Dirichlet
distribution with the parameter vector v = (vg,...,V,—_1) can be written as

F(Vo R o Vn—l):ruo—l o ';Elln—l“l
T(vg)- - T(vp1) ™ noto

(1.1) f(X;v) =
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where 29 := 1 -2y — -+ — z,-1, and the parameters v; > 0, i = 0,1,...,
n — 1. The Dirichlet distribution is a multivariate continuous distribution, and
it has close relation with gamma distribution. Let {¥;}*-! ~ Gam(v;,1) be
independent. For¢=1,...,n — 1. Let

Y
- =ly,

xr; .

X :=(x1,...,Zn_1), then X ~ Dirichlet(v).

Since the parameters vyg,...,v,_-1 of the Dirichlet distribution play the
role of the coordinate system, it is obvious that the Dirichlet manifold is n-
dimensional. In particular, when n = 2, the Dirichlet distribution becomes the
Beta distribution, and we have shown all the geometric metrics in [6].

The present paper is organized as follows: Firstly, we show that the Dirich-
let distribution is an exponential family distribution and give the dual geo-
metric structures of the Dirichlet manifold. We investigate the a-geometric
structure of the Dirichlet manifold. We obtain the Fisher information matrix,
a-connections, and a-curvatures. Secondly, we consider the cases of lower di-
mension. Thirdly, we obtain an affine immersion of the Dirichlet manifold. At
last, we give the e-flat hierarchical structures and the orthogonal foliations of
the Dirichlet manifold.

2. The geometric structures of the Dirichlet manifold
Definition 2.1. The set
I(vo+---+ V’n—l)xyo—l Va1l
I'(v) -+ - T'(vn—1) °
(Y0, ¥n-1) E RT x - X Rt}

T
T

= {F(X;v)|f(X;v) =
(2.1)

is called the Dirichlet manifold, where (v, ...,v,—1) plays the role of the co-
ordinate system.

Proposition 2.1. The Dirichlet distribution is an exponential family distribu-
tion.

Proof. The Dirichlet probability density function (1.1) can be rewritten as

f(X) =exp {VO logxg +v1logzy + - -+ v,p_1logz,._1

+ (—logzg —logzy — -+ —logzn_1)

(2.2) . (logF(Vo) +log(v1) + -+ +log(vn_1)

—logl(vo+ 11 +--- + Vn—l))}a
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then, let

y; = logxo, 61 = vy,

y» = logxy, 0y = vy,
(2.3)

Yn = logxn_1, 0n = vp_1,
M(y) == +y2+ - +yn),

so the potential function »(8) can be presented as
(2.4) ¥(0) =logl'(6,) +1logl'(@s)+ -+ +1ogl'(6,) —log'(6) + 65+ ---+8,,).

Therefore, the Dirichlet probability density function can be denoted by

(2.5) £y) = exw { Y b —06) + M(y) },
i=1
where 0 = (6y,...,0,) = (vg,...,vn_1) i3 call the natural coordinate system of

the Dirichlet manifold, and Af(y) is a function merely depending on y.

From (2.5), we know that the Dirichlet distribution is an exponential fam-
ily distribution. Obviously, the Dirichlet manifold we consider here is n-
dimensional. ]

Remark. The Dirichlet manifold is +1-flat.

Proposition 2.2. The Dirichlet manifold has the following dual structures.

Under the natural coordinate system 8 = (61,...,8,) = (vg,...,Vn—1), and
the potential function (8),

1) n=0"....0") = (Y(O;)— T 161+ +6,),...,9(0,) -V, (0, +--+
8,)), is the dual coordinate system, and is also called expectation coordinate
system, where U(0;) =T (6;)/T(6;) is the digamma function, and V;(6, + - - - +
Qn) = F:(Gl ++9n)/F(91 + -+ 0,0 =1,...,n.

(i) @(n) = 0, 6:(@(0) — Wil6 + -+ +0a) ) — log[(61) — 10gT(6:) -

- —log'(0n) +logl(0y + 02+ --- 4+ 8,,), is the dual potential function with
respect to the expectation coordinate system.

Proof. Since the expectation coordinate system can be obtained by

. oy (6)

o

77-— 893"

we get the expectation coordinate system of the Dirichlet manifold by

(2.6) (n',....,n") = (111(91)—\111(91+---+9n_),...,‘P(Qn)-—\lln(gl-l—---—l—@n)).
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The dual potential function with respect to the expectation coordinate system
is obtained by

#(n)
= 0" - ¥(8)
2.7 s
20 S 0:(2(0:) = W1 + -+ +6,)) —logT(61)
=1
—-logI'(62) — -+ ~logT'(6,) +logl'(#y + 6 +--- 4+ 6,).
This finishes the proof of Proposition 2.2. 1

Under the natural coordinate system, we use the potential function with
respect to the natural coordinate system to give some simple formulae for the
geometric metrics ([1], [2])

g:;(8) = 0:0;4(0),
Tk (8) = 0:0;0:¢(8) = Ok(gs5),

(28) nglz(g) = —5—Tijx (0),
jok),g =7 (TremiTsin — Thm;i Tan)g™ ™.

Since O;¢(0) = ¥(6;) — ¥ (61 +---+6,),i =1,...,n, combining (2.4) with
(2.8), by a calculation, we get the following geometric metrics.
i) when 7 = j, we get

(2.9) gii(6) = 8;0:0(0) =¥ (6;) — V(0 +---+8,), i=1,...,n,
ii) when ¢ # 7, we get
(2.10) 9i;(0) = 0:0;%(0) = —¥i;(61 + -~ +0n), 5,7 =1,...,m,

where U(0;) = T'(8;)/T(6;) is the digamma function, ¥;;(8; + --- + 6,) =
0% logl'(; + -+ - + 0,)/06;00;, i,j = 1,...,n, and we denote it by ¥,; for
brevity.

So the Fisher information matrix of the Dirichlet manifold can be written

as
(T (H)-Tn T e =Ty
—Wy, U (0y) —Uyp --- —¥,,
(211) (gw) — : . : : 3
\ o, STy e U (0) -, )

which is an n-dimensional positive definite matrix.
The cubic tensor T;;x is symmetric and is given by

(2.12) Tii =W (6;) — (01 +---+6,) when i=j =k,
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and for other cases
(2.13) Tije = =¥infbr + -+ 6n),

where \I»‘z'jk(gl Feeo+6,) = 9° log [(@y+---+6,)/06:00;06, i,5,k=1,...,n,
and we denote it by W¥;;x for brevity.
Then we obtain the a-connections of the Dirichlet manifold as follows:
When i = j = k,

« 1_" 1 .
(2.14) ngi) == —2—9{-(@ (6;) — Wi(6 + - - +9n)), 1=1,...,n,
and for other cases

Q 1“ ..
(215) Fg,ﬂz -7 Qag[]ijk(gl +“'+6’n—)3 'L,],k::l,..-,n.

In the following, we will consider lower dimensional Dirichlet manifold.

3. The geometric structures of the three dimensional
Dirichlet manifold

Remark. When n = 2, the Dirichlet distribution changes into

. (v + v1)
3.1 V) =
3 P = T )
which is the Beta distribution. The geometric structures of the Beta manifold
have been shown in [6].

(1 B CU)UO_lmul_l,

In this section, we mainly investigate the geometric structures of the 3-
dimensional Dirichlet manifold, and the corresponding Dirichlet distribution
can be rewritten as

;v Do+ v+ )
(3:2) f(Xsv) = ROSIOACS

vo—1 vi—1_vo—1
(1 — 1 — .’172) 0 I, .’L’22 ,

where X = (z,22).
It corresponds to a simplex embedding to a 3-dimensional space (see Fig-
ure 1). For 0 < v < 1, multiple modes appear in the corners.

Figure 1. Geometric description of the Dirichlet
distribution when n=3.
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Definition 3.1. The set

(3.3)
) | v T+ + )
= {FEGwIF ) = oSS

(Vo,Vi,Ug) S R+ X R+ X R+}

vo—1 vi—1 wo—1
(1 =z —x2)™ " Ty,

forms a special 3-dimensional Dirichlet manifold, where (vg,v1,v2) plays the
role of the natural coordinate system of Sjs.

From (2.11), we see that the Fisher information matrix of S satisfies

| ‘IJ! (91) — lIJll ! "’II’12 _II’13
(3.4) (9:5) = —-W¥ys U (0) — Wao | — W3 :
—¥; —Wos U (05) — 33

and by a complicated calculation, the inverse of the Fisher information matrix
(9i5), (9*) is given by

1 B(62,03) C(03,601,02) C(62,61,053)
(35) (QU) — :Z[ 0(93:91392) B(91393) 0(91:92993) y
C(02,6:,05) C(61,0,05) B(6y,6,)

where
= (U (61) — ©11) (T (82) — Wa2)(T (B3) — W33) — 2015015
+ (W13)% (T (8) — Ta2) + (Ta3)% (¥ (81) — T11)
+ (U12)% (T (63) — Usy),
B(z,y) = ¥ (2)¥ () — ¥ (2)Tyy — ¥ (1) Voo + Tou Ty — (),
Clz,y,2) =0 (2)0,, — U, T, + T, U,

From (2.12), (2.13), (2.14) and (2.15), we get the cubic tensor and a-connections
of 33 .

Tiii = (61) — U111, Tooo = ¥ (63) — Wogo, Thgz = U (f3) — Usas,
T112 = T121 = T211 = — V112, T113 = D131 = T317 = — P13,
(3.6) Tizg = To12 = Too1 = — W29, T3z = Ta13 = T331 = — P33,
Too3 = To32 = T320 = —Wa23, To33 = T323 = T329 = —Wass,
T193 = To31 = T312 = T913 = T321 = T132 = — W93,

and
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M) = S50 - W), T = TS0 - U,

ng% = L 3) — Wasz),

M) =TS =T = = ; =W, TG = Ti5) = T4 = = ;a‘l’ns,
F(ljil = F(z?‘}z — Ffzg% - 1 ; (1‘1’1‘22 Tﬁcis = Fil% — F(a(;i - = ; G‘I'133=
rfs = T8} = T8 = = W 1) =T} = T = 22 Py
Fgg% = F(z‘;; = Fgﬂ = F’ns = F(m = Iwg ;)J = = ;Q‘I’l‘z:s-

Combing (2.8), (3.5) with (3.6), we get the nonzero components of the cur-
vature tensor

Ryt =1—§3[( U (0% 12 + W11 @iz — (¥112)2) B0, 65) + (T (61)F (6)
— 0 (01)Wogs — U (02U 1y + Wipy Wony — U112P129)C (63,61, 62)
+ ('—‘I’”(Gl)‘l’z'z'; + W1 Waos + Uiz Wioe — 2W 19 Wi93)C(02,6,,03)
+ (=0 (02)T112 + Cara W11y — (W122))B(61.63) + (¥112%223— T (62) %113
+ Wi13Wo29 — 2W193W122)C(61,62.63) + (P113P223 — (‘1’123)2)3(91,92)]:
R1313 Hl — o (— o (91)‘1’133 + Wi U133 — (W113)°) B(62, 63)

4A
+ (=0 (91)‘1’233 + Wy Waoss + WioW33 — 2W,413W123)C (05,0, 02)
(

T (61)8 (65) — U (61)Wags — U (63) W11y + U111 Pazz — Ury3¥1ss)
- C(02,01,03) + (¥112Pa33 — (T123)°) B(6;, 63)
+ (U113Pas3 — T (03) W00 + U39 Was — 2(F123)2)C(6;, 62, 62)
+ (~0" (B3) W13 + Ugg30 ;3 — (‘1’133)2)3(91:92)}}
l—a

1A : [(‘I’m‘l’i‘n — (¥23)°)B(6.65)

+ (" (02) 133 + Tany Ui + W90 Woss — 2Wo9qW)93)C (63, 6y, 6)

+ (o33 W133 — U (83) W10 + yaoWigy — 20153 Wa33)C(62, 61, 65)

+ (— 0" (82) Va3 + WonaWosy — (Uan3)?) B(61,63)

+ (T (02)T (63) — T (82) 333 — U (63)Tazo + Wana Wagg — WopgWoss)
0(91,92,93) (— 0" (8) Pazs + Pya3Wang — (V33) )3(91,92)]

[(‘1’112‘1’113 + 0 (0) T 10 — U111 W103)B(62.65) + (T109¥ 1315 + T (6,) 203
— Wy Ug93)C (03, 6.05) + (U112 153 + T (8)) Ty — W1y $og3)C (62,61, 65)

+ (U122Wi93 — ¥ 12Wayy) B(0;.64)

+ (U199 a3 + (U193)? — Uy19Uo33 — U3 W0s3)C (04,62, 05)

+ (U350 03 — ‘11113‘11233)3(91s92)J1
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s} 1 - a.;: 1
53 =—qa [('1‘112‘11123 — U195V 113)B(62,03) + (V112Wa23 + ¥ (62) V113 — PoroWy13)

x C(03,61,02) + (¥112¥a33 + (¥123)° — Y122¥133 — U113V003)C (02,61, 63)
+ (T122Pa03 + U (62)T1o3 — TazoW123) B(61,65)

+ (U122 Pa33 + ‘1'”(92)‘1'133 — W99 VU133)C(0,,0,03)

+ (U103 %233 — Wa23¥133) B(61, 92)}:

R

(a) 1— 032

R)335 =~1i [(‘1’113‘1’123 — W1330,15)B(62,83) + (¥113Wa93 + (F193)° — T33P 90

— Wo33W119)C(#3,601,02) + (¥113¥a33 + 7" (03)U112 — Uy12W333)C(62,61,65)
+ (W123Wo03 — Was3Wi90) B(01,603) + (V133 V223 + v (63) V122 — ¥333W19)
x C(61,02,03) + (W133F933 + ¥ (03)T193 — ‘1'333‘1"123)3(91,92)]-

So the a-sectional curvatures of the Dirichlet manifold are given by

¥ R 2 Iy
K1(21)2 =4AB(9(:, 53 [(“‘I’ (01) %190 + U111 T 109 — (¥112)*) B(s,63)

"

+ (T (1) T (8:) = U (61) T2 = U (62)Una1 + W11 gy — U115 ¥122)C(603,61,65)
+ (=07 (01) P23 + U111 Pa23 + P13 V102 — 28112U123)C (62,61, 63)

+ (=0 (02) 112 + opo 110 — (VU122)2) B(61,63)

+ (U112T005 — U (02)Ua13 + P113Wan0 — 201530192)C(6), 62, 65)

+ (W113P223 — (‘1’123)2)3(91,92)]:

1—a?

K{;)s =4AB(91,93) [(“‘I’” (01)T133 + 111 T133 — (U113)°) B(02,05)

+ (=0 (61)T233 + U111 o33 + U112¥1a3 — 201130 193)C (05,61, 62)

+ (T (61)0" (83) — T (81) U333 — T (63) 111 + P111Paz3 — U113T133)C(62,061,63)
+ (U112 Pa33 — (P123)°) B(6:,63)

+ (0113033 — T (63) 110 + T112Paz3 — 2(T193)%)C (61,605, 65)

+ (0" (83) U113 + U333 113 — (W133)) B(61,62)|,

e 1-a?
I\ésgg =4AB(93,93) [(‘1’122‘1’133 — (W123))B(62,65)

+(-9" (02)W133 + WaooWi33 + W12oWaszs — 2W003Wy03)C(03,64,62)
+ (V2330133 — v (03) U199 + W122W333 — 2W193Wa33)C' (62, 61, 03)
+ (=T (62)Wa33 + Wona Woss — (Vaa3)%)B(61,65)

+ (T (62)T" (63) — o (02) U333 — T (03) U905 + Ua20W335 — Won3Wa33)C (61, 6o, 63)

H

+ (=¥ (03)¥a23 + P333Wo03 — (‘1’233)2)8(91,92)].

Using the formulae R;; = R;x;19", and R = Ri;19% g%, we can obtain the
Ricci curvatures and the mean curvature of S3. We omit them here.
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4. Affine immersion

Let M be an m-dimensional manifold, f be an immersion from M to R™+!,
and £ be a vector field along f. For arbitrary x € R™*!, we identify T, R™+! =
R™+1 . The pair {f,£} is said to be an affine immersion from M to R™*! if|
for each point P € A, the following formula holds

TypyR"H = f(TpM) @ spanép,

where £ is called a transversal vector ficld.

Denoting by D the standard flat affine connection of R™*!, we have the
following decompositions

Dx f¥ = f(VxY) + WX, Y)E,
Dx& = —f.(Sh(X)) + T(X)E.

The induced objects V, h, Sh and 7 are the induced connection, the affine
fundamental form, the affine shape operator and the transversal connection
form, respectively.

Therefore, we have the following

Theorem 4.1. Since (S, h,V.\V*) is the n-dimensional Dirichlet manifold, it
is dually flat space with a global coordinate system. 8 is an affine coordinate
system of V, and ¥ s a @-potential function. Then the Dirichlet manifold
(S, h,V) can be immersed in R**! by the following way

f:58—> R

6
84 -
o :
0,
\ logT(6,) + logI'(6) + - +log ['(8,) —logT(8) + 0y + - +6,)
which is called a graph immersion from S into R"T! | and the transversal vector
¢E=(0,...,0,1) .
N— —

n

b:

5. The hierarchical structures and the orthogonal foliations of
the Dirichlet manifold

Denoting by

Si = {FXIf(X) =

[{vo + -+ k-1) wo1 wvikon-1

Too) - Toe) T R A :
(V0. vi1) € RY x - x R |
)
a k-dimensional Dirichlet manifold, where (vg,...,v,-1) plays the role of the

natural coordinate system, and & < n, then we have the following theorem.

Theorem 5.1. S;. is an e-flat submanifold of the dual flat manifold S(S = S,,).
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Proof. Let (vp,...,vkx_1) be a coordinate system of S, and from Proposition
2.2, we see that 8 = (64,...,60,) = (vo,...,Vk—1,Vk,...,Vn_1) 18 an e-affine
coordinate system of S satisfying £ < n.
From the statistical manifold S; to the manifold S, we define the following
map
g : Sk - S
(vo,..-,vk—1) = (Yo, - Vk—1,0,...,0),
N e’
n-—k

then o i1s a continuous smooth map from Si to S. So we can see that S is an

immersed submanifold of S.
Since S is +1-flat, and

V0=V0+0V1+"°+0Vn_1,
vi =1 + 0 +00 + -+ 0v,_;.

Vi1 = Vp_1 + 001 4+ 4+ 009+ 00 + -+ - + 01,

that is, S; can be written as a linear subspace in the e-affine coordinate system

6 of S.
From the conclusion in [1], we obtain that S is an e-flat submanifold of S.
This completes the proof of the Theorem 5.1. 1

Remark. From the result of the Theorem 5.1, we can see that Sy is an e-flat
submanifold of Sj;.

Definition 5.1. A nested series of e-flat submanifolds
S CS,C---CS1CS5, =8

is called an e-flat hierarchical structure, or, shortly, the e-structure, where every
Sk is an e-flat submanifold of Si+1.

More details about e-hierarchical structure see [2].

Now let us introduce a new coordinate system of the Dirichlet manifold,
which is called mixed coordinate system. In this case, the corporate in the
n-dimensional Dirichlet manifold can be represented as

£k — (nk_agK"") — (nla v 7nk:9k+17 - 7€n)7
where ng- = (m1,...,Mk), and O+ = (Ok41,---,0n).
We define two subsets Ej(ap+), and My (bi-) of the Dirichlet manifold as
follows
Er(ar+) = {p(z; 0)|0k+ = ar+},

My (bg-) = {P(ZU;"?)\W— = bk—}:
where ar+ = (agy1,---,an), and by— = (by,...,bx), and ag+1,...,0n,b1,..., bk
are all constants.
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Theorem 5.2. A nested series
E(0) C Ex(0)C---C E,—1(0) C E,(0) =S

18 an e-flat hierarchical structure of the Dirichlet manifold, where ap+ = 0;
A nested series

M,_1(0) C M, »(0)C---CM;(0) C Mp(0) =S
is an m-flat hierarchical structure of the Dirichlet manifold, where b,- = 0.

Proof. From the definition of Ey(a,+), we know that E(a,+) is a submanifold
of Ext1(aqk4+1y+) with the fixed parameter 8,,,. Here, we take ap+ = 0, and
it is clear that F,(0) = 5. Since S is in the form of (2.1), it belongs to an
exponential distribution family, and it is £1-flat. For E,,_;(0) can be written as
a linear submanifold in the e-affine coordinates 8 of E,,(0), E,_1(0) is an e-flat
submanifold of E,(0), and E, _;(0) is automatically dually flat. Similarly, we
find that E(0) is an e-flat submanifold of E¢y1(0), and Ex(0) is automatically
dually flat. So we see that the nested series

E1(0) C E(0) C---CE,1(0) CEL0)=S

is an e-flat hierarchical structure of the Dirichlet manifold.

The proof of the rm-flat hicrarchical structure of the Dirichlet manifold is
similar with the above, we omit it here.

This finishes the proof of the Theorem 5.2. O

Proposition 5.1. The submanifolds M, and E) of the Dirichlet manifold are
orthogonal at any point.

Proof. Let ey be the tangent vector along the natural coordinate curve 6; of
the ;. The tangent space at a point in Ey, is a linear space spanned by these
tangent vectors, namely, {e;.€s,...,e;} forms a basis of the tangent space of
E). Let e’/ be the tangent vector along the expectional coordinate curve n of
the M;. The tangent space at a point in M, is a linear space spanned by these
tangent vectors, namely, {¢"*! ... ¢"} forms a basis of the tangent space of
M;.

So the inner product of the tangent vectors e’/ and e; at any point & =

(Ne-0p,+) = (M1, ... .0k By, ...,6,) in the n-dimensional Dirichlet manifold
1S
ey - e! = 0.
and hence E} and M, are orthogonal at &,.
This completes the proof of the Proposition 5.1. d

Thus, Ey and M, give the orthogonal foliations of the Dirichlet manifold.

From Definition 5.1, we know that S, is an e-flat submanifold of S, and is
dual flat automatically. Then any point p in S can be projected to S through
the dual geodesic. The projection p* is the unique point to make the distance
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from p to Sk smallest in the sense of the Kullback divergence([1]). p* can be

denoted by
p*=]]»
Sk

In information theory, the information between any fixed point py in Si and

p can be decomposed into two parts under the help of the Pythagoras theorem
([2]), that is,

D[p,po] = D[p,p*] + D[p”, po|.

Here, D[p, p*] is regarded as the information amount representing effects of p
higher than k, whereas D|[p*, po] is regarded as the information amount repre-
senting eftects of p not higher than k. |
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