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HOMOLOGY OF THE GAUGE GROUP OF EXCEPTIONAL
LIE GROUP G

Youxaal CCHOI

ABSTRACT. We study homology of the gauge group associated with the
principal Gy bundle over the four-sphere using the Eilenberg—Moore spec-
tral sequence and the Serre spectral sequence with the aid of homology
and cohomology operations.

1. Introduction

Let G be a compact, connected simple Lie group. The fact that n3(G) =
74(BG) = Z leads to the classification of principal G bundles P, over S* by the
integer k in Z. The gauge group G, (G) acts freely on the space Map (P, EG)
of all G-equivariant maps from P to EG and its orbit space is given by
the k-component of the space Map, (S*, BG) of maps from S* to BG. Since
Map( Py, EG) is contractible, the classifying space of G (G) is homotopy equiv-
alent to Map,(S*, BG). Then the number of homotopy types of Gi.(G) is finite
[7]. Similarly, if G (G) is the based gauge group which consists of base point
preserving automorphisms on I, BG?(G) is homotopy equivalent to Q3G [1].

In this paper we study the mod p homology of the gauge group associated
with principal bundle of the exceptional Lie group G» by computing the Serre
spectral sequence for the following fibration:

GL(Gs) — Gi(G2) — G
The main result is that the Serre spectral sequence converging to
H.(Gi(G2); Fp)
collapses at the Es-term except for p = 3, 7.

2. Preliminaries

Let E(z) be the exterior algebra on = and I'(z) be the divided power Hopf
algebra on z which is free over v;(z) with product v;(z)vy;(z) = ("?3 )it ()
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and with coproduct A(v,(z)) = Y. Yn—i(x) ®7i(z). Throughout this paper,
the subscript of an element always means the degree of an element; for example
the degree of a; is .

There are only four division algebras over R, that is, the real numbers R,
complex numbers C, the quaternions H and the Cayley numbers K. K is R® as
a vector space and it is the non-associative algebra. The exceptional Lie group
G5 is the group of automorphisms of K. By the Cartan-Killing classification
we call G5 the exceptional Lie group of type (3,11). The following theorem is
well-known [14].

Theorem 2.1. The cohomology of G5 are given by
H*(Go;Fy) = Fo[23]/(25) ® E(Sq°x3),
H*(G2;F3) = E(x3,711) for p> 2

with all x; primitive, where Plzs = z1; for p = 5.
We have homology operations ();,—1) on the n-fold loop space 1" X
Qi(p—1) : H, ("X F,) — Hpq+i(p—1)(QnX5Fp)

for0<i<n—-—1whenp=2,andfor 0 <i<n-1andi+qeven when p > 2.
They are natural with respect to n-fold loop maps. In particular, we have
Qox = zP. The iterated power Q¢ denotes the composition of @);’s a times. If
G is a Lie group, G is homotopy equivalent to QBG. Hence (Q3(,—1) is defined in
H.(Q°G;F,) and Q4(p—1) 1s defined in H.(Q%G;F,). These operations satisfy
the following properties [6].

Theorem 2.2. In the path-loop fibration Q"1 X — PQ"X — Q" X, we have
the following.

(a) If z € H.(Q"X;F,) is transgressive in the Serre spectral sequence, so is
Qir and 7o Q;p—1)T = Qix1)(p~1) © TT for each i, 0 <1 < n—1, where 7T is
the transgression.

(b) For p > 2 and n > 1, d2?~V(zP7! @ 7(z)) = —BQp_nT(z) if z €
Hy (2" X F,).

(c) Forp=2, S¢lQix = Q,_1z if x € H(Q"X;Fs) and g+ i is even.

From now on, we will simplify the notation as follows: We denote F,[{Q%u :
a > 0] by F,[Q%u] and F,[Q'u : a > 0] by F,[Q¢"'u] and so on. Now we
recall the mod p homology of the four fold loop space of a sphere.
H, (8™ Fy) = B [QQQ5]n > 1,
H, (Q'S"F,) = E(Q;—ng(p—l)Ln) ® I [BQ;ﬂQg(p—nbn]
® B, [Q5(,—1)BQ50p1ytn] ® E(Qf,_1)BQ50,— 1) BR5 (1 tn)
® F, [BQH, BQ4 1 BQSEY yinl,n > 1.
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Theorem 2.3 ([3, Theorem 5.14]). Let X be a path connected H-space. Then
the following are true.

(a) The FEilenberg Moore spectral sequence collapses at Es if and only if
kero = 0.
(b) The suspension o : QH*(X;F,) - PH* " 1(QX;TF,) is injective if k Z#
2 mod 2p.
(c) The suspension ¢ : QH*(X:F,) — PH" 1 (QX;F,) is surjective if
k—1% -2 mod 2p.
From now on we denote H,(Q'S™;F,) by Qi(n), ®;_, H.(Q'S™;F,) by
Qi(ni,...,n.), and ®7_, H*(Q'S"*:F,) by Q'(ny,...,n,) for each i,n > 1.

Theorem 2.4. The cohomology of the loop space of Go are
H™(QGy; Fy) = [UQ]/(LU%) Y F(’Us,ylo),
H* QG;,Fg ®]F5 ;5t (yQ))25)1
1 >0
H*(QGy;F,) = Q'(3,11) for odd primes p # 5.

Proof. By the Eilenberg Moore spectral sequence for the path loop fibration
converging to H*(QG,; F, ), as a Hopf algebra we have

Ey = Tory-cy:7,) (F2, )
— Torl“"z[-ra]/(fg)Q@f‘?(-Pﬁ) (Fy, )
= T()I'Fg[xg]/('rg) (Fy,Fo) ® TOI‘E(I{.)) (Fy, Fy)
= E(y2) % T(y10) ® T(ya)-
Since the Ey-term concentrates on even dimensions, the spectral sequence col-
lapses at the Es-term. Hence E, = E... Since the Eilenberg-Moore spectral
sequence preserves the Stecnrod actions, from Sq¢?zs = x5, we get Sqys = yq,

that is, y3 = y4. From this. we can solve the algebra extension problem and
we have

H*(QG2;Fy) = Falya]/(y2) @ T(ys) ® T(y10)-

Now we turn to the odd prime cases. Like the mod 2 case, we use the
Eilenberg-Moore spectral sequence converging to H*(Q0G4; F,) with

Eg = T()I'H-=((*2.F (FP,F )
= T()I'p (r3)E(xig) (F IF )
= I'(y2) » D(y10).

Since all elements in £, are even dimensional, the spectral sequence collapses
at the Fs-term, so By = E. For p # 5, there is no extension problem and we
get

H*(0G,; F,) = I'(y2) » T(y10) = 2'(3,11)
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as a Hopf algebra. Now we consider the case p = 5. In the bar construction, y,
is represented by [z3]. Since Plzz = z;; in H*(G3;Fs), we have the following
algebra extension:

yg’ - 771.?}2 = 771[33‘3] = [7"1373] = [2711] = Y10 -

The element ~s: (y2) is represented by [z3|---|z3] ( 5 factors ) in the bar con-
struction. By the Cartan formula, we also have the following algebra extension:

(5 (42))° = P s (y2) = P53 - |z3)]
= [P'zs| - |Plas) = [z11] - - |211]
= ¥5: (Y10)-

Since I'(y2) = @50 %:(y2) and I'(yi0) = &;5075:(y10) as an algebra, it

follows that T'(y2) ® ['(y10) in Eeo produces &,;q Fs [vs: (y2)]/ ((vs: (y2))?°) in
H*(G9;F5) and we get the conclusion. O

To get H. (3 G;F,), where Q3G is the zero component of Q2G, we need the
following result [10].

Theorem 2.5. The Eilenberg-Moore spectral sequences for the path loop fibra-
tions converging to the mod p (co)homology of the double and the triple loop
spaces of any simply connected finite H—-space collapse at the Eo-term.

By Theorem 2.5 and the formal computations of Tor, Ext and Cotor, we get
the following two theorems.

Theorem 2.6. The homology of the double loop space of G2 are

H. (VG2 Fa) = E(21) @ F>[B27] ® F2[Qf27] ® Q2(11),
H.(Q%°G2;Fs) = E(Qf21) ® Fs5 [Qg2as),
H*(Qng;IFp) (25(3,11) for odd primes p # 5.

Theorem 2.7. The homology of the triple loop space of Go are

H, (Q5G2; ) = F2 [QF Bws] ® F2[Q§Q5ws] ® Q3(11),
H.(%G2;Fs) = F5[Qg (@s[1] * [-5])] ® E(Q§ Q7 war) ® Fs[8Q5Q}war],
H*(QSGQ;FP) = Q3(3,11) for odd primes p # 5.

3. Based gauge group

For the exceptional Lie group G2 we have

7T3(G2)
7T4(G2)

Z,
0
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Exploiting the fibration leading to the 3-connected cover G»(3), for which the
base is G» and the fiber is A'(Z.2)[13], we obtain

H*(G2(3); F2) = Fa [ys] @ E(Bys, S¢°Sq ys),

H*(G2(3); Fs) = Fs[ys0] ? E(y11,BYs0),

H*(G2(3);Fp) = Fp[yap] ® E(y11,By2p) for primes p # 2, 5.
Hence H;(G»(3);F,) = 0for 1 <i < 7 for all primes p and H;(*G2(3);F,)

H;(Q'G;F,) = 0for 1 <i < 3. Note that 2*Gs ~ Q*G2(3). Since ng(Gz)

Q}ZGQ, we have gg(Gg) ~ Q(QZG_)) Note 9362 ™~ Q%GQ x Z and Q(QiGg)
VG, forany k € Z.

Theorem 3.1. The mod 2 homology of the four fold loop space of G2 s
H.(Q'G2;F2) = F2[Q5 Q37us] ® F2 [Q1 Q2 Q5u: : 6= 5,7].

Proof. We compute the H,(2?G,;F,) by the almost same method computing
the triple loop space in [4]. The group G, as a subgroup of O(7), acts on
S7. The action is transitive and the isotropy group is SU(3). So we have the
following fibration

e 12

SU(3) — Gy — S°.
Consider the Serre spectral sequence for the following fibration:
Q'SU(3) — Gy — Q4S5
We have
HL(945%F,) = B [Q1Q4Q50)
H(4SU(3); By) = B[ Q0 Qbur]  F [Q2QBQ5ual,
d*Q5  uy = Qfuy.

Since H;(*Ga;Fy) = H,(Q1Gy(3);¥y) = 0 for 1 <14 < 3, we have

(QO ){ ’) Q?qula a, b _.>_ 0.
Note that 7(Q7T Q5:y) = 0 since Q57 Q5u; = 0. Then the E,, term is

Fo Q7+ Q5e0) % Fo[QT Q5057 1] © Fa [QF Q3 Q5] .

On the other hand, Sq¢lQ: Q5" 1y = QuQ5"'t2, a > 0 by the Nishida rela-
tion. Since d?Q%*'u; = Qfuy, we have lS’r;,v*CQIQ)“”rl = Q% uyg,a > 0 by
Theorem 2.2 in [4]. By the Nishida relation again, Q2012 = Qsug. So if we
put (Qite = us, then b+1Q§(1,2) can be expressed as QQ%Q5us. We also
put u7 = Qsts. Then we get H (G, ) = Fy [Q?qu,;] R Fy [Q?Q%qui :
i = 5,7]. This result implies that the Eilenberg-Moore spectral sequence con-
verging to H*(Q*G,;F>) for the path loop fibration collapses at Fs. Since
H;(2*G2(3);Fy) = H;(2'°G4;Fy), we have Bus = uy from the information of
H*(G2(3); F2). O
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Theorem 3.2. For odd primes p, the mod p homology of the four fold loop
space of Go are as follows:

H,. (VG Fs) = E(Q{Q%,ur) ®F5[8Q5 Q}ur] ® Fs [QeQFguas)

® B(Q$8Q5Q5suss) ® Fs [8Q4T BQg ™ Qfstuas),
H.(Q'Gy;F,) = Q4(3,11)  for odd primes p#5.
Proof. Consider the Eilenberg—Moore spectral sequence converging to
H*(Q'Gy;F,)

with

by = TOI'H*(QgGQ);Fp)(Fpan) :
Then by Theorem 2.3, the collapse at E5 depends on whether

o QH*Pt2(Q3Gy;F,) - PH** 1 (Q'Gy; F,)

is injective or not. By the exact sequence of Milnor-Moore [12] and Theo-
rem 2.3, we have that

QHM (3G, Fy) = PH* P (Q3G; Fy)
~ QH*PT3(Q%GyT,).

For odd primes p, every primitive element in H.(Q°Gs;F,) is one of the fol-
lowing types:

Q?p—1)22z‘+1, (5Q?pﬂ1)z2i+1)pa (52Q?p_1)22i+1)p-

Since [pr_l)zgi_ﬂ = 2p% — 1 and |ﬂpr_1)z2,;_1| = |[32Q‘("p_1)z2,;_1| = 2p% —
2, there is no primitive element with degree 2kp + 3. By duality, there is
no indecomposable element with degree 2kp + 3 in H*(2°G>;F,). Hence the
Eilenberg—Moore spectral sequence collapses at E- and there is no coalgebra
extension problem in such a case [8]. Hence by duality, the Eilenberg-Moore
spectral sequence converging to H,(Q*G5; F,) with

E2 = COtOI‘H* (Qng;F'p) (Fp 5 Fp)

also collapses at E2. Then we get the conclusion for H,(*Gs;F,) by the
formal cotor calculation since there is no algebra extension problem by the
duality. O

4. Full gauge group

Let P;, be a principal G5 bundle over S* classified by the integer k in Z and
Gr(G2) be the gauge group of the principal G5 bundle P;. From [1, Prop. 2.4]
we can get

BGy, (GZ) = l\da‘pP;c (543 BGQ)a
where the subscript P denotes the component of a map of M into BG4, which
induces Pr. By the natural evaluation map, we have

QiGQ — Mappk (84, BGQ) — BG,.
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Looping again, we get
Q4G2 o~ Q(Q:Gg) — gkr(Gg) — GQ .
So we have the following fiber sequence

QG 2y QBGL) —— Gi(Gy) —— Gy —2 3G, -

Main idea to compute H(G.(G1);7,) is to exploit the property of the map
(Qh)s : HQG;F,) = H(Q(Q]G2);F,). Recall the following p-primary com-
ponent of homotopy groups of odd spheres [15, p. 176].

Proposition 4.1. Let p be an odd prime. Then we have the following.
71'2m_|_1+25(p_1)_2(52m+1;p) =Z/(p) for l<m <1, andi=2,...,p—1.
Tamt142i(p-1)—1(S>"ip) = Z/(p) for L<m, andi=1,2,...,p~ 1.
Toma14+k(S°" 11 p) = 0 otherwise for k < 2p(p — 1) — 2.

From this, we have

7T'(54j_1'p) — Z’/(p) lf"::?p and ]: ]-1
2 ’ 0, otherwise for 7 > 1 and 0 <1 < 2p.

When localized at p > 7, G2 splits as Gy ~, §® x S'! [14]. So when localized
at p > 7, the map h : (G2)(,) — (¥G2)(p is null homotopic since h : (5% x
Sy = (283 x Q351 is null homotopic. Here X, denote X localized
at the prime p. Note that m6(S%;p) = m4(S%;p) = 0 for p > 7, but 7(53;3) =
Z/(3) and m14(S°;7) = Z /(7).

Theorem 4.2. For any primes p # 3,7, we have
H,(Ge(G2);F,) = H (Q*Go; ) @ Ho(G; )
as an algebra for any k € Z.

Proof. Consider the Serre spectral sequence converging to H,(Gr(G2);F,) for
Q(QEG) — Gr(G2) = G2. For p = 2, by the degree reason the first possi-
ble nontrivial differentials are 7((Sq¢*z3)*) = Bus and 7((x%)*) = us where
(S¢?z3)* and (z3)* are dual homology elements in H,(G2;Fz). Note that
B(z3)* = (Sq*z3)*. Consider the following homotopy commutative morphisms

of fibrations:
QG2 ——p * —_ GQ

o | L]

QA Cs) —— OBGH(Gs) — Ga.
Assume that 7((Sq¢?z3)*) = Bus. Then 7(Qo(Sqr3)*) = Q1Pus. But
Qo(S¢*r3)* =0
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in H,(G2;Fy), while Q,8us is not trivial in H,(Q*Gs;Fy). This is a contradic-
tion. Hence the Serre spectral sequence collapses at E? and there is no algebra
extension problem by the degree reason.

Similarly for p = 5, the degree of target primitive of the first possible non-
trivial differential should be 2 or 10. But there is no primitive of such degrees
in H,(Q*G2;Fs). So the Serre spectral sequence collapses at Ey and there is
no algebra extension problem by the degree reason. Localized at p > 7, the
map hx : (G2)p) — (2°G2)(p is null homotopic by the above argument fol-
IOWil’lg PI‘OpOSitiOH 4.1. So Qhk : (QGQ)(p) — (Q(Q%Gg))(p) >~ (Q4G2)(p) is null
homotopic for p > 7. Hence the Serre spectral sequence collapses at E? for
p>T. []

Theorem 4.3. For k Z 0 mod 3, the mod 3 homology of Gi.(G2) is as follow:

H.(Gr(G2);Fs) = E(Q3Qbus) ® F3[Q3Q%us] ® F3[Q5 Q5 us]
® F3[Q%(Q4Bus)] ® E(Q38Q58Q5us)
® s [BQgﬁQﬁﬁQEU?,] ® 24(11) ® E(e11) .

Proof. We have the following homotopy commutative morphism of fibrations:

03 5% L, oG,

l l

Map,,(S*, BS®) ——— Map,(S*, BG2)

l l

BSB — BGQ.

Then H,(f;F3) = f. is onto by Theorem 2.7. Consider the following homotopy
commutative morphism of fibrations:

Gy, — x — G

wl L ]

Q(Q3Gs) —— x — QB3Gs.

From the case for S3 {9, 11], (A+).(z3) = kBw4 up to a choice of a generator.
So we have

(Qhi)s(z2) = (i)« (7(23)) = 7((hr)+(23)) = 7(Bws) = Pus.
There is the following homotopy commutative morphism of fibrations:
Gy — % — Gy

| l l

Q(QiGz) —_ gk(Gg) — (5.
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Then we have 7(e3) = Bug in the Serre spectral sequence for the bottom row
fibration converging to H.(Gr(G2);¥3) where H,(Go;F3) = E(es,eqr). Dif-
ferentials from e;; are trivial because of degree reason. Hence we get the
conclusion. O

For the case of p = 7, we follow the procedure used in [5]. Localized at
p = 7, there are the following p-equivalences [14]:

SP(B) iy 53 X ST X Sll =7 GQ X ST.
Now we consider the exact sequence of homotopy groups:

o (Sp(3) = 7 (Q3Sp(3)) —— ™ (Map, (S, BSp(3)) — - --

Then the boundary map (Jr)#x can be expressed in terms of the Samelson
product (,) as follows [2, 15]. For a in m1(Sp(n)), we have

(1) (Or)pa = £k{a, 5),
where 3 generates w3(Sp(3)) [15. Proposition 2.1]. We recall the following fact.
Proposition 4.4 (|2, Theorem 2]). The kernel of the homomorphism
Tan—1(Sp(n)) ® m4m-1(Sp(m)) = Tansam—2(Sp(n + m — 1))
ax 3= (a, )

induced by the Samelson product (,) is precisely divisible by ki m/knkm, where

L (2r — 1}12  for even r,
"ol @r =D for odd r.

Theorem 4.5. For k 20 mod 7, the mod 7 homology of G is as follow:
H.(G(G2);Fr) =E(Q§Q75u11) % Fr [8QEQ%5u11] ® F7 [QF,8Q7  u1]
o 7 [Q12(Qr28u11)] 00 E(Q§5Q526Q su11)
% F7[3Q83Q%,30Q5u11] @ Q4(11) ® E(es).
Proof. By Proposition 4.4, for o« € 71 (5p(3)) and 3 € n3(Sp(3)) we get
the order of {a, 3) = 84.

Soif p =17, then O : (Sp(3))(7ry — (923.5p(3))(7) is not null homotopic for k Z 0
mod 7. Localized at p = 7, Sp(3) =7 S? xS"xS'". S0 d) : (¥ x ST x51)7) —
(228% x *S7 x Q35!1) 4, is not null homotopic for k Z 0 mod 7. Note that

m(S%;7) =0 fori—=06,10, m4(S*7) = 2/(7),
(ST 7)) = m (S 7)) =0 fori=6,10,14.

This implies that J¢ : (5% x SM) ) = (O3 53 x %S5z is not null homotopic
for £ # 0 mod 7. Since G2 ~7 S x S''. O : (G2)7) = (Q3G2)(7) is not null



708 YOUNGGI CHOI

homotopic for k # 0 mod 7. Consider the following:

, a
St §3x S Ty 0363 x Q351 = 3G,

d
0353,
Let 8, = pody and §, = po & 0. Since (J;)4 is nonzero, (8, )4 is nonzero.
We have hy : m;(S';7) —» 7;(2353;7) is an isomorphism for ¢ < 11. Note
that m;(235%,7) = 0 for 1 < 4 < 10. By J. H. C. Whitehead Theorem,

i

(0,)s : Hi1 (S F;) — Hp1(Q353;F7) is also an isomorphism. Hence we have

0. k=0 mod 7
8)ulen) =4
(9)«(en1) {75 0, k%0 mod 7,

where H,(G2;F;) = E(e3,e11). There is the following homotopy commutative

morphism of fibrations:
Gy —— x —— Gy

N

Q3Gy) —— ¥ —— Q3Gs.

We have (0y).(e11) = kBwis for fwis € H.(Q;G2;F;) up to a choice of a
generator. Let 7(e1;) = vy for vig € H.(QUG2;F;). Then we have that

(Q0k )« (v10) = (Q0k)«(T(e11)) = T((Ok)«(e11)) = T(kBw12) = kBu1y .

Consider the following homotopy commutative morphism of fibrations:

WGy —— * — Gy

o | l l

Q(Q%Gg) EE— gk(Gg) — GQ.

Then we have 7(e11) = kBuji; in the Serre spectral sequence converging to
H.(Gi(G5);F7) for the bottom row fibration. From this we get the conclusion.
L]
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