HOMOLOGY OF THE GAUGE GROUP OF EXCEPTIONAL LIE GROUP G_2

Younggi Choi

ABSTRACT. We study homology of the gauge group associated with the principal G_2 bundle over the four-sphere using the Eilenberg-Moore spectral sequence and the Serre spectral sequence with the aid of homology and cohomology operations.

1. Introduction

Let G be a compact, connected simple Lie group. The fact that $\pi_3(G) = \pi_4(BG) = Z$ leads to the classification of principal G bundles P_k over S^4 by the integer k in Z. The gauge group $\mathcal{G}_k(G)$ acts freely on the space $\operatorname{Map}(P_k, EG)$ of all G-equivariant maps from P_k to EG and its orbit space is given by the k-component of the space $\operatorname{Map}_k(S^4, BG)$ of maps from S^4 to BG. Since $\operatorname{Map}(P_k, EG)$ is contractible, the classifying space of $\mathcal{G}_k(G)$ is homotopy equivalent to $\operatorname{Map}_k(S^4, BG)$. Then the number of homotopy types of $\mathcal{G}_k(G)$ is finite [7]. Similarly, if $\mathcal{G}_k^b(G)$ is the based gauge group which consists of base point preserving automorphisms on P_k , $B\mathcal{G}_k^b(G)$ is homotopy equivalent to Ω_k^3G [1].

In this paper we study the mod p homology of the gauge group associated with principal bundle of the exceptional Lie group G_2 by computing the Serre spectral sequence for the following fibration:

$$\mathcal{G}_k^b(G_2) \longrightarrow \mathcal{G}_k(G_2) \longrightarrow G_2.$$

The main result is that the Serre spectral sequence converging to

$$H_*(\mathcal{G}_k(G_2); \mathbb{F}_p)$$

collapses at the E_2 -term except for p = 3, 7.

2. Preliminaries

Let E(x) be the exterior algebra on x and $\Gamma(x)$ be the divided power Hopf algebra on x which is free over $\gamma_i(x)$ with product $\gamma_i(x)\gamma_j(x) = \binom{i+j}{j}\gamma_{i+j}(x)$

Received September 18, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 55R20, 55S12.

Key words and phrases, exceptional Lie group G_2 , gauge group, iterated loop space, Dyer-Lashof operation, Serre spectral sequence.

This work was supported by KOSEF R01-2004-000-10183-0.

and with coproduct $\Delta(\gamma_n(x)) = \sum_{i=0}^n \gamma_{n-i}(x) \otimes \gamma_i(x)$. Throughout this paper, the subscript of an element always means the degree of an element; for example the degree of a_i is i.

There are only four division algebras over R, that is, the real numbers R, complex numbers C, the quaternions H and the Cayley numbers K. K is R^8 as a vector space and it is the non-associative algebra. The exceptional Lie group G_2 is the group of automorphisms of K. By the Cartan-Killing classification we call G_2 the exceptional Lie group of type (3,11). The following theorem is well-known [14].

Theorem 2.1. The cohomology of G_2 are given by

$$H^*(G_2; \mathbb{F}_2) = \mathbb{F}_2[x_3]/(x_3^4) \otimes E(Sq^2x_3),$$

 $H^*(G_2; \mathbb{F}_3) = E(x_3, x_{11}) \text{ for } p > 2$

with all x_i primitive, where $\mathcal{P}^1x_3 = x_{11}$ for p = 5.

We have homology operations $Q_{i(p-1)}$ on the n-fold loop space $\Omega^n X$

$$Q_{i(p-1)}: H_q(\Omega^n X; \mathbb{F}_p) \to H_{pq+i(p-1)}(\Omega^n X; \mathbb{F}_p)$$

for $0 \le i \le n-1$ when p=2, and for $0 \le i \le n-1$ and i+q even when p>2. They are natural with respect to n-fold loop maps. In particular, we have $Q_0x=x^p$. The iterated power Q_i^a denotes the composition of Q_i 's a times. If G is a Lie group, G is homotopy equivalent to ΩBG . Hence $Q_{3(p-1)}$ is defined in $H_*(\Omega^3G;\mathbb{F}_p)$ and $Q_{4(p-1)}$ is defined in $H_*(\Omega^4G;\mathbb{F}_p)$. These operations satisfy the following properties [6].

Theorem 2.2. In the path-loop fibration $\Omega^{n+1}X \to P\Omega^nX \to \Omega^nX$, we have the following.

- (a) If $x \in H_*(\Omega^n X; \mathbb{F}_p)$ is transgressive in the Serre spectral sequence, so is $Q_i x$ and $\tau \circ Q_{i(p-1)} x = Q_{(i+1)(p-1)} \circ \tau x$ for each $i, 0 \le i \le n-1$, where τ is the transgression.
- (b) For p > 2 and n > 1, $d^{2q(p-1)}(x^{p-1} \otimes \tau(x)) = -\beta Q_{(p-1)}\tau(x)$ if $x \in H_{2q}(\Omega^n X; \mathbb{F}_p)$.
 - (c) For p=2, $Sq_*^1Q_ix=Q_{i-1}x$ if $x\in H_q(\Omega^nX;\mathbb{F}_2)$ and q+i is even.

From now on, we will simplify the notation as follows: We denote $\mathbb{F}_p[Q_i^a u]$: $a \geq 0$ by $\mathbb{F}_p[Q_i^a u]$ and $\mathbb{F}_p[Q_i^{a+1} u]$ and $\mathbb{F}_p[Q_i^{a+1} u]$ and so on. Now we recall the mod p homology of the four fold loop space of a sphere.

$$H_{*}(\Omega^{4}S^{n+4}; \mathbb{F}_{2}) = \mathbb{F}_{2}[Q_{1}^{a}Q_{2}^{b}Q_{3}^{c}\iota_{n}], n \geq 1,$$

$$H_{*}(\Omega^{4}S^{n+4}; \mathbb{F}_{p}) = E(Q_{p-1}^{a}Q_{3(p-1)}^{b}\iota_{n}) \otimes \mathbb{F}_{p}[\beta Q_{p-1}^{a+1}Q_{3(p-1)}^{b}\iota_{n}]$$

$$\otimes \mathbb{F}_{p}[Q_{2(p-1)}^{a}\beta Q_{3(p-1)}^{b+1}\iota_{n}] \otimes E(Q_{(p-1)}^{a}\beta Q_{2(p-1)}^{b+1}\beta Q_{3(p-1)}^{c+1}\iota_{n})$$

$$\otimes \mathbb{F}_{p}[\beta Q_{(p-1)}^{a+1}\beta Q_{2(p-1)}^{b+1}\beta Q_{3(p-1)}^{c+1}\iota_{n}], n \geq 1.$$

Theorem 2.3 ([3, Theorem 5.14]). Let X be a path connected H-space. Then the following are true.

- (a) The Eilenberg Moore spectral sequence collapses at E_2 if and only if $\ker \sigma = 0$.
- (b) The suspension $\sigma: QH^k(X; \mathbb{F}_p) \to PH^{k-1}(\Omega X; \mathbb{F}_p)$ is injective if $k \not\equiv 2 \mod 2p$.
- (c) The suspension $\sigma: QH^k(X; \mathbb{F}_p) \to PH^{k-1}(\Omega X; \mathbb{F}_p)$ is surjective if $k-1 \not\equiv -2 \mod 2p$.

From now on we denote $H_*(\Omega^i S^n; \mathbb{F}_p)$ by $\Omega_i(n)$, $\otimes_{k=1}^r H_*(\Omega^i S^{n_k}; \mathbb{F}_p)$ by $\Omega_i(n_1, \ldots, n_r)$, and $\otimes_{k=1}^r H^*(\Omega^i S^{n_k}; \mathbb{F}_p)$ by $\Omega^i(n_1, \ldots, n_r)$ for each $i, n \geq 1$.

Theorem 2.4. The cohomology of the loop space of G_2 are

$$egin{aligned} H^*(\Omega G_2;\mathbb{F}_2) &= \mathbb{F}_2[y_2]/(y_2^4) \otimes \Gamma(y_8,y_{10}), \ H^*(\Omega G_2;\mathbb{F}_5) &= igotimes_{i\geq 0} \mathbb{F}_5[\gamma_{5^i}(y_2)]/((\gamma_{5^i}(y_2))^{25}), \ H^*(\Omega G_2;\mathbb{F}_p) &= \Omega^1(3,11) \ for \ odd \ primes \ p
eq 5. \end{aligned}$$

Proof. By the Eilenberg Moore spectral sequence for the path loop fibration converging to $H^*(\Omega G_2; \mathbb{F}_2)$, as a Hopf algebra we have

$$E_{2} = \operatorname{Tor}_{H^{*}(G_{2};\mathbb{F}_{2})}(\mathbb{F}_{2},\mathbb{F}_{2})$$

$$= \operatorname{Tor}_{\mathbb{F}_{2}[x_{3}]/(x_{3}^{4})\otimes E(x_{5})}(\mathbb{F}_{2},\mathbb{F}_{2})$$

$$= \operatorname{Tor}_{\mathbb{F}_{2}[x_{3}]/(x_{3}^{4})}(\mathbb{F}_{2},\mathbb{F}_{2}) \otimes \operatorname{Tor}_{E(x_{5})}(\mathbb{F}_{2},\mathbb{F}_{2})$$

$$= E(y_{2}) \otimes \Gamma(y_{10}) \otimes \Gamma(y_{4}).$$

Since the E_2 -term concentrates on even dimensions, the spectral sequence collapses at the E_2 -term. Hence $E_2 = E_{\infty}$. Since the Eilenberg-Moore spectral sequence preserves the Steenrod actions, from $Sq^2x_3 = x_5$, we get $Sq^2y_2 = y_4$, that is, $y_2^2 = y_4$. From this, we can solve the algebra extension problem and we have

$$H^*(\Omega G_2; \mathbb{F}_2) = \mathbb{F}_2[y_2]/(y_2^4) \otimes \Gamma(y_8) \otimes \Gamma(y_{10}).$$

Now we turn to the odd prime cases. Like the mod 2 case, we use the Eilenberg-Moore spectral sequence converging to $H^*(\Omega G_2; \mathbb{F}_p)$ with

$$E_{2} = \operatorname{Tor}_{H^{\circ}(G_{2};\mathbb{F}_{p})}(\mathbb{F}_{p},\mathbb{F}_{p})$$

$$= \operatorname{Tor}_{E(x_{3})\otimes E(x_{10})}(\mathbb{F}_{p},\mathbb{F}_{p})$$

$$= \Gamma(y_{2}) \otimes \Gamma(y_{10}).$$

Since all elements in E_2 are even dimensional, the spectral sequence collapses at the E_2 -term, so $E_2 = E_{\infty}$. For $p \neq 5$, there is no extension problem and we get

$$H^*(\Omega G_2; F_p) = \Gamma(y_2) \otimes \Gamma(y_{10}) = \Omega^1(3, 11)$$

as a Hopf algebra. Now we consider the case p = 5. In the bar construction, y_2 is represented by $[x_3]$. Since $\mathcal{P}^1x_3 = x_{11}$ in $H^*(G_2; \mathbb{F}_5)$, we have the following algebra extension:

$$y_2^5 = \mathcal{P}^1 y_2 = \mathcal{P}^1 [x_3] = [\mathcal{P}^1 x_3] = [x_{11}] = y_{10}$$
.

The element $\gamma_{5i}(y_2)$ is represented by $[x_3|\cdots|x_3]$ (5^i factors) in the bar construction. By the Cartan formula, we also have the following algebra extension:

$$(\gamma_{5i}(y_2))^5 = \mathcal{P}^{5i}\gamma_{5i}(y_2) = \mathcal{P}^{5i}[x_3|\cdots|x_3]$$
$$= [\mathcal{P}^1x_3|\cdots|\mathcal{P}^1x_3] = [x_{11}|\cdots|x_{11}]$$
$$= \gamma_{5i}(y_{10}).$$

Since $\Gamma(y_2) = \bigotimes_{i \geq 0} \gamma_{5^i}(y_2)$ and $\Gamma(y_{10}) = \bigotimes_{i \geq 0} \gamma_{5^i}(y_{10})$ as an algebra, it follows that $\Gamma(y_2) \otimes \Gamma(y_{10})$ in E_{∞} produces $\bigotimes_{i \geq 0} \mathbb{F}_5[\gamma_{5^i}(y_2)]/((\gamma_{5^i}(y_2))^{25})$ in $H^*(G_2; \mathbb{F}_5)$ and we get the conclusion.

To get $H_*(\Omega_0^3 G; \mathbb{F}_p)$, where $\Omega_0^3 G$ is the zero component of $\Omega^3 G$, we need the following result [10].

Theorem 2.5. The Eilenberg-Moore spectral sequences for the path loop fibrations converging to the mod p (co)homology of the double and the triple loop spaces of any simply connected finite H-space collapse at the E_2 -term.

By Theorem 2.5 and the formal computations of Tor, Ext and Cotor, we get the following two theorems.

Theorem 2.6. The homology of the double loop space of G_2 are

$$H_*(\Omega^2 G_2; \mathbb{F}_2) = E(z_1) \otimes \mathbb{F}_2[\beta z_7] \otimes \mathbb{F}_2[Q_1^a z_7] \otimes \Omega_2(11),$$

 $H_*(\Omega^2 G_2; \mathbb{F}_5) = E(Q_4^a z_1) \otimes \mathbb{F}_5[Q_8^a z_{48}],$
 $H_*(\Omega^2 G_2; \mathbb{F}_p) = \Omega_2(3, 11) \text{ for odd primes } p \neq 5.$

Theorem 2.7. The homology of the triple loop space of G_2 are

$$H_*(\Omega_0^3 G_2; \mathbb{F}_2) = \mathbb{F}_2[Q_1^a \beta w_6] \otimes \mathbb{F}_2[Q_1^a Q_2^b w_6] \otimes \Omega_3(11),$$

$$H_*(\Omega_0^3 G_2; \mathbb{F}_5) = \mathbb{F}_5[Q_8^a (Q_8[1] * [-5])] \otimes E(Q_4^a Q_{12}^b w_{47}) \otimes \mathbb{F}_5[\beta Q_4^a Q_{12}^b w_{47}],$$

$$H_*(\Omega^3 G_2; \mathbb{F}_p) = \Omega_3(3, 11) \text{ for odd primes } p \neq 5.$$

3. Based gauge group

For the exceptional Lie group G_2 we have

$$\pi_3(G_2) = Z,
\pi_4(G_2) = 0.$$

Exploiting the fibration leading to the 3-connected cover $G_2(3)$, for which the base is G_2 and the fiber is K(Z,2)[13], we obtain

$$H^*(G_2\langle 3 \rangle; \mathbb{F}_2) = \mathbb{F}_2[y_8] \otimes E(\beta y_8, Sq^2 Sq^1 y_8),$$
 $H^*(G_2\langle 3 \rangle; \mathbb{F}_5) = \mathbb{F}_5[y_{50}] \otimes E(y_{11}, \beta y_{50}),$
 $H^*(G_2\langle 3 \rangle; \mathbb{F}_p) = \mathbb{F}_p[y_{2p}] \otimes E(y_{11}, \beta y_{2p}) \quad \text{for primes } p \neq 2, 5.$

Hence $H_i(G_2\langle 3\rangle; \mathbb{F}_p) = 0$ for $1 \leq i \leq 7$ for all primes p and $H_i(\Omega^4 G_2\langle 3\rangle; \mathbb{F}_p) = H_i(\Omega^4 G_2; \mathbb{F}_p) = 0$ for $1 \leq i \leq 3$. Note that $\Omega^4 G_2 \simeq \Omega^4 G_2\langle 3\rangle$. Since $B\mathcal{G}_k^b(G_2) \simeq \Omega_k^3 G_2$, we have $\mathcal{G}_k^b(G_2) \simeq \Omega(\Omega_k^3 G_2)$. Note $\Omega^3 G_2 \simeq \Omega_k^3 G_2 \times Z$ and $\Omega(\Omega_k^3 G_2) \simeq \Omega^4 G_2$ for any $k \in Z$.

Theorem 3.1. The mod 2 homology of the four fold loop space of G_2 is

$$H_*(\Omega^4 G_2; \mathbb{F}_2) = \mathbb{F}_2[Q_1^a Q_2^b \beta u_5] \otimes \mathbb{F}_2[Q_1^a Q_2^b Q_3^c u_i : i = 5, 7].$$

Proof. We compute the $H_*(\Omega^4 G_2; \mathbb{F}_2)$ by the almost same method computing the triple loop space in [4]. The group G_2 , as a subgroup of O(7), acts on S^7 . The action is transitive and the isotropy group is SU(3). So we have the following fibration

$$SU(3) \longrightarrow G_2 \longrightarrow S^6$$
.

Consider the Serre spectral sequence for the following fibration:

$$\Omega^4 SU(3) \longrightarrow \Omega^4 G_2 \longrightarrow \Omega^4 S^6$$
.

We have

$$H_*(\Omega^4 S^6; \mathbb{F}_2) = \mathbb{F}_2[Q_1^a Q_2^b Q_3^c \iota_2],$$
 $H_*(\Omega^4 SU(3); \mathbb{F}_2) = \mathbb{F}_2[Q_1^a Q_3^b u_1] \otimes \mathbb{F}_2[Q_1^a Q_2^b Q_4^c u_4],$
 $d^2 Q_3^{a+1} u_1 = Q_4^a u_4.$

Since $H_i(\Omega^4 G_2; \mathbb{F}_2) = H_i(\Omega^4 G_2 \langle 3 \rangle; \mathbb{F}_2) = 0$ for $1 \leq i \leq 3$, we have

$$\tau(Q_0^a Q_2^b \iota_2) = Q_1^a Q_3^b u_1, \ a, b \ge 0.$$

Note that $\tau(Q_1^{a+1}Q_2^b\iota_2)=0$ since $Q_2^{a+1}Q_3^bu_1=0$. Then the E_∞ term is

$$\mathbb{F}_{2}[Q_{1}^{a+1}Q_{2}^{b}\iota_{2}]\otimes \mathbb{F}_{2}[Q_{1}^{a}Q_{2}^{b}Q_{3}^{c+1}\iota_{2}]\otimes \mathbb{F}_{2}[Q_{1}^{a}Q_{2}^{b}Q_{4}^{c}u_{4}].$$

On the other hand, $Sq_1^1Q_1Q_2^{a+1}\iota_2 = Q_0Q_2^{a+1}\iota_2$, $a \geq 0$ by the Nishida relation. Since $d^2Q_3^{a+1}u_1 = Q_4^au_4$, we have $Sq_*^1Q_1Q_2^{a+1}\iota_2 = Q_4^{a+1}u_4$, $a \geq 0$ by Theorem 2.2 in [4]. By the Nishida relation again, $Q_2Q_1\iota_2 = Q_4u_4$. So if we put $Q_1\iota_2 = u_5$, then $Q_0^aQ_1^{b+1}Q_2^c(\iota_2)$ can be expressed as $Q_0^aQ_1^bQ_3^cu_5$. We also put $u_7 = Q_3\iota_2$. Then we get $H_*(\Omega^4G_2; \mathbb{F}_2) = \mathbb{F}_2[Q_1^aQ_2^bu_4] \otimes \mathbb{F}_2[Q_1^aQ_2^bQ_3^cu_i: i=5,7]$. This result implies that the Eilenberg-Moore spectral sequence converging to $H^*(\Omega^4G_2; \mathbb{F}_2)$ for the path loop fibration collapses at E_2 . Since $H_i(\Omega^4G_2; \mathbb{F}_2) = H_i(\Omega^4G_2; \mathbb{F}_2)$, we have $\beta u_5 = u_4$ from the information of $H^*(G_2\langle 3\rangle; \mathbb{F}_2)$.

Theorem 3.2. For odd primes p, the mod p homology of the four fold loop space of G_2 are as follows:

$$H_*(\Omega^4 G_2; \mathbb{F}_5) = E(Q_4^a Q_{12}^b u_7) \otimes \mathbb{F}_5[\beta Q_4^{a+1} Q_{12}^b u_7] \otimes \mathbb{F}_5[Q_8^a Q_{16}^b u_{46}] \\ \otimes E(Q_4^a \beta Q_8^b Q_{16}^c u_{46}) \otimes \mathbb{F}_5[\beta Q_4^{a+1} \beta Q_8^{b+1} Q_{16}^c u_{46}],$$

$$H_*(\Omega^4 G_2; \mathbb{F}_p) = \Omega_4(3, 11)$$
 for odd primes $p \neq 5$.

Proof. Consider the Eilenberg-Moore spectral sequence converging to

$$H^*(\Omega^4G_2;\mathbb{F}_p)$$

with

$$E_2 \cong \operatorname{Tor}_{H^*(\Omega_0^3 G_2); \mathbb{F}_p)}(\mathbb{F}_p, \mathbb{F}_p)$$
.

Then by Theorem 2.3, the collapse at E_2 depends on whether

$$\sigma: QH^{2kp+2}(\Omega_0^3 G_2; \mathbb{F}_p) \to PH^{2kp+1}(\Omega^4 G_2; \mathbb{F}_p)$$

is injective or not. By the exact sequence of Milnor-Moore [12] and Theorem 2.3, we have that

$$QH^{2kp+2}(\Omega_0^3 G_2; \mathbb{F}_p) \cong PH^{2kp+2}(\Omega_0^3 G_2; \mathbb{F}_p)$$
$$\cong QH^{2kp+3}(\Omega^2 G_2; \mathbb{F}_p).$$

For odd primes p, every primitive element in $H_*(\Omega^2 G_2; \mathbb{F}_p)$ is one of the following types:

$$Q_{(p-1)}^a z_{2i+1}, \quad (\beta Q_{(p-1)}^a z_{2i+1})^{p^k}, \quad (\beta^2 Q_{(p-1)}^a z_{2i+1})^{p^k}.$$

Since $|Q_{(p-1)}^a z_{2i-1}| = 2p^a i - 1$ and $|\beta Q_{(p-1)}^a z_{2i-1}| = |\beta^2 Q_{(p-1)}^a z_{2i-1}| = 2p^a i - 2$, there is no primitive element with degree 2kp + 3. By duality, there is no indecomposable element with degree 2kp + 3 in $H^*(\Omega^2 G_2; \mathbb{F}_p)$. Hence the Eilenberg-Moore spectral sequence collapses at E_2 and there is no coalgebra extension problem in such a case [8]. Hence by duality, the Eilenberg-Moore spectral sequence converging to $H_*(\Omega^4 G_2; \mathbb{F}_p)$ with

$$E^2 \cong \operatorname{Cotor}_{H_*(\Omega_0^3 G_2; \mathbb{F}_p)}(\mathbb{F}_p, \mathbb{F}_p)$$

also collapses at E^2 . Then we get the conclusion for $H_*(\Omega^4 G_2; \mathbb{F}_p)$ by the formal cotor calculation since there is no algebra extension problem by the duality.

4. Full gauge group

Let P_k be a principal G_2 bundle over S^4 classified by the integer k in Z and $G_k(G_2)$ be the gauge group of the principal G_2 bundle P_k . From [1, Prop. 2.4] we can get

$$B\mathcal{G}_k(G_2) \simeq \operatorname{Map}_{P_k}(S^4, BG_2),$$

where the subscript P_k denotes the component of a map of M into BG_2 which induces P_k . By the natural evaluation map, we have

$$\Omega_k^3 G_2 \longrightarrow \operatorname{Map}_{P_k}(S^4, BG_2) \longrightarrow BG_2$$
.

Looping again, we get

$$\Omega^4 G_2 \simeq \Omega(\Omega_k^3 G_2) \longrightarrow \mathcal{G}_k(G_2) \longrightarrow G_2$$
.

So we have the following fiber sequence

$$\cdots \Omega G_2 \xrightarrow{\Omega h_k} \Omega(\Omega_k^3 G_2) \xrightarrow{} \mathcal{G}_k(G_2) \xrightarrow{} G_2 \xrightarrow{h_k} \Omega_k^3 G_2 \cdots$$

Main idea to compute $H(\mathcal{G}_k(G_2); \mathbb{F}_p)$ is to exploit the property of the map $(\Omega h_k)_* : H(\Omega G_2; \mathbb{F}_p) \to H(\Omega(\Omega_k^3 G_2); \mathbb{F}_p)$. Recall the following p-primary component of homotopy groups of odd spheres [15, p. 176].

Proposition 4.1. Let p be an odd prime. Then we have the following.

$$\pi_{2m+1+2i(p-1)-2}(S^{2m+1};p) = \mathbb{Z}/(p) \text{ for } 1 \le m < i, \text{ and } i = 2, \dots, p-1.$$

$$\pi_{2m+1+2i(p-1)-1}(S^{2m+1};p) = \mathbb{Z}/(p) \text{ for } 1 \le m, \text{ and } i = 1, 2, \dots, p-1.$$

$$\pi_{2m+1+k}(S^{2m+1};p) = 0$$
 otherwise for $k < 2p(p-1) - 2$.

From this, we have

$$\pi_i(S^{4j-1}; p) = \begin{cases} \mathbb{Z}/(p), & \text{if } i = 2p \text{ and } j = 1, \\ 0, & \text{otherwise for } j > 1 \text{ and } 0 \le i \le 2p. \end{cases}$$

When localized at $p \geq 7$, G_2 splits as $G_2 \simeq_p S^3 \times S^{11}$ [14]. So when localized at p > 7, the map $h: (G_2)_{(p)} \to (\Omega^3 G_2)_{(p)}$ is null homotopic since $h: (S^3 \times S^{11})_{(p)} \to (\Omega^3 S^3 \times \Omega^3 S^{11})_{(p)}$ is null homotopic. Here $X_{(p)}$ denote X localized at the prime p. Note that $\pi_6(S^3; p) = \pi_{14}(S^3; p) = 0$ for p > 7, but $\pi_6(S^3; 3) = \mathbb{Z}/(3)$ and $\pi_{14}(S^3; 7) = \mathbb{Z}/(7)$.

Theorem 4.2. For any primes $p \neq 3, 7$, we have

$$H_*(\mathcal{G}_k(G_2);\mathbb{F}_p)=H_*(\Omega^4G_2;\mathbb{F}_p)\otimes H_*(G_2;\mathbb{F}_p)$$

as an algebra for any $k \in \mathbb{Z}$.

Proof. Consider the Serre spectral sequence converging to $H_*(\mathcal{G}_k(G_2); \mathbb{F}_p)$ for $\Omega(\Omega_k^3 G) \to \mathcal{G}_k(G_2) \to G_2$. For p=2, by the degree reason the first possible nontrivial differentials are $\tau((Sq^2x_3)^*) = \beta u_5$ and $\tau((x_3^2)^*) = u_5$ where $(Sq^2x_3)^*$ and $(x_3^2)^*$ are dual homology elements in $H_*(G_2; \mathbb{F}_2)$. Note that $\beta(x_3^2)^* = (Sq^2x_3)^*$. Consider the following homotopy commutative morphisms of fibrations:

$$\Omega G_2 \longrightarrow * \longrightarrow G_2$$

$$\begin{array}{cccc}
\Omega h_k \downarrow & \downarrow & \downarrow \\
\Omega(\Omega_k^3 G_2) \longrightarrow \Omega B \mathcal{G}_k(G_2) \longrightarrow G_2.$$

Assume that $\tau((Sq^2x_3)^*) = \beta u_5$. Then $\tau(Q_0(Sq^2x_3)^*) = Q_1\beta u_5$. But

$$Q_0(Sq^2x_3)^* = 0$$

in $H_*(G_2; \mathbb{F}_2)$, while $Q_1\beta u_5$ is not trivial in $H_*(\Omega^4 G_2; \mathbb{F}_2)$. This is a contradiction. Hence the Serre spectral sequence collapses at E^2 and there is no algebra extension problem by the degree reason.

Similarly for p=5, the degree of target primitive of the first possible non-trivial differential should be 2 or 10. But there is no primitive of such degrees in $H_*(\Omega^4 G_2; \mathbb{F}_5)$. So the Serre spectral sequence collapses at E_2 and there is no algebra extension problem by the degree reason. Localized at p>7, the map $h_k: (G_2)_{(p)} \to (\Omega^3 G_2)_{(p)}$ is null homotopic by the above argument following Proposition 4.1. So $\Omega h_k: (\Omega G_2)_{(p)} \to (\Omega(\Omega_k^3 G_2))_{(p)} \simeq (\Omega^4 G_2)_{(p)}$ is null homotopic for p>7. Hence the Serre spectral sequence collapses at E^2 for p>7.

Theorem 4.3. For $k \not\equiv 0 \mod 3$, the mod 3 homology of $\mathcal{G}_k(G_2)$ is as follow:

$$H_*(\mathcal{G}_k(G_2); \mathbb{F}_3) = E(Q_2^a Q_6^b u_3) \otimes \mathbb{F}_3[\beta Q_2^a Q_6^b u_3] \otimes \mathbb{F}_3[Q_4^a \beta Q_6^{b+1} u_3]$$
$$\otimes \mathbb{F}_3[Q_4^a (Q_4 \beta u_3)] \otimes E(Q_2^a \beta Q_4^b \beta Q_6^c u_3)$$
$$\otimes \mathbb{F}_3[\beta Q_2^a \beta Q_4^b \beta Q_6^c u_3] \otimes \Omega_4(11) \otimes E(e_{11}).$$

Proof. We have the following homotopy commutative morphism of fibrations:

$$\begin{array}{cccc}
\Omega_k^3 S^3 & \xrightarrow{f} & \Omega_k^3 G_2 \\
\downarrow & & \downarrow \\
\operatorname{Map}_k(S^4, BS^3) & \longrightarrow & \operatorname{Map}_k(S^4, BG_2) \\
\downarrow & & \downarrow \\
BS^3 & \longrightarrow & BG_2.
\end{array}$$

Then $H_*(f; \mathbb{F}_3) = f_*$ is onto by Theorem 2.7. Consider the following homotopy commutative morphism of fibrations:

$$\begin{array}{cccc}
\Omega G_2 & \longrightarrow & * & \longrightarrow & G_2 \\
 & & & \downarrow & & \downarrow & & \downarrow \\
 & & & \downarrow & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow & & \downarrow \\
 & & & & & \downarrow & & \downarrow & & \downarrow \\
 & & & & & & \downarrow & & \downarrow & & \downarrow \\
 & & & & & & \downarrow & & \downarrow & & \downarrow \\
 & & & & & & & \downarrow & & \downarrow & & \downarrow \\
 & & & & & & & \downarrow & & \downarrow & & \downarrow \\
 & & & & & & & & \downarrow & & \downarrow & & \downarrow \\
 & & & & & & & & \downarrow & & \downarrow & & \downarrow \\
 & & & & & & & & \downarrow & & \downarrow & & \downarrow \\
 & & & & & & & & \downarrow & & \downarrow & & \downarrow \\
 & & & & & & & & \downarrow & & \downarrow & & \downarrow \\
 & & & & & & & & & \downarrow & & \downarrow & \downarrow \\
 & & & & & & & & & & \downarrow & & \downarrow \\
 & & & & & & & & & & \downarrow & & \downarrow \\
 & & & & & & & & & & & \downarrow & \downarrow \\
 & & & & & & & & & & & \downarrow & \downarrow \\
 & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & & & & \downarrow \\
 & & & & & & & & & &$$

From the case for S^3 [9, 11], $(h_k)_*(x_3) = k\beta w_4$ up to a choice of a generator. So we have

$$(\Omega h_k)_*(z_2) = (\Omega h_k)_*(\tau(x_3)) = \tau((h_k)_*(x_3)) = \tau(\beta w_4) = \beta u_3$$
.

There is the following homotopy commutative morphism of fibrations:

$$\begin{array}{cccc}
\Omega G_2 & \longrightarrow & * & \longrightarrow & G_2 \\
 & & \downarrow & & \downarrow & & \downarrow \\
 & & & \downarrow & & \downarrow \\
 & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow \\
 & & \downarrow & \downarrow & \downarrow \\
 & \downarrow &$$

Then we have $\tau(e_3) = \beta u_3$ in the Serre spectral sequence for the bottom row fibration converging to $H_*(\mathcal{G}_k(G_2); \mathbb{F}_3)$ where $H_*(G_2; \mathbb{F}_3) = E(e_3, e_{11})$. Differentials from e_{11} are trivial because of degree reason. Hence we get the conclusion.

For the case of p = 7, we follow the procedure used in [5]. Localized at p = 7, there are the following p-equivalences [14]:

$$Sp(3) \simeq_7 S^3 \times S^7 \times S^{11} \simeq_7 G_2 \times S^7$$
.

Now we consider the exact sequence of homotopy groups:

$$\cdots \to \pi_{11}(Sp(3)) \xrightarrow{(\partial_k)_\#} \pi_{11}(\Omega_k^3 Sp(3)) \longrightarrow \pi_{11}(\operatorname{Map}_k(S^4, BSp(3)) \to \cdots$$

Then the boundary map $(\partial_k)_{\#}$ can be expressed in terms of the Samelson product \langle , \rangle as follows [2, 15]. For α in $\pi_{11}(Sp(n))$, we have

$$(\partial_k)_{\#}\alpha = \pm k\langle \alpha, \beta \rangle,$$

where β generates $\pi_3(Sp(3))$ [15, Proposition 2.1]. We recall the following fact.

Proposition 4.4 ([2, Theorem 2]). The kernel of the homomorphism

$$\pi_{4n-1}(Sp(n)) \otimes \pi_{4m-1}(Sp(m)) \to \pi_{4n+4m-2}(Sp(n+m-1))$$

 $\alpha \otimes \beta \to \langle \alpha, \beta \rangle$

induced by the Samelson product \langle , \rangle is precisely divisible by k_{n+m}/k_nk_m , where

$$k_r = \begin{cases} (2r-1)!2 & \text{for even } r, \\ (2r-1)! & \text{for odd } r. \end{cases}$$

Theorem 4.5. For $k \not\equiv 0 \mod 7$, the mod 7 homology of \mathcal{G}_k is as follow:

$$H_*(\mathcal{G}_k(G_2); \mathbb{F}_7) = E(Q_6^a Q_{18}^b u_{11}) \otimes \mathbb{F}_7[\beta Q_6^a Q_{18}^b u_{11}] \otimes \mathbb{F}_7[Q_{12}^a \beta Q_{18}^{b+1} u_{11}]$$

$$\otimes \mathbb{F}_7[Q_{12}^a (Q_{12} \beta u_{11})] \otimes E(Q_6^a \beta Q_{12}^b \beta Q_{18}^c u_{11})$$

$$\otimes \mathbb{F}_7[\beta Q_6^a \beta Q_{12}^b \beta Q_{18}^c u_{11}] \otimes \Omega_4(11) \otimes E(e_3).$$

Proof. By Proposition 4.4, for $\alpha \in \pi_{11}(Sp(3))$ and $\beta \in \pi_3(Sp(3))$ we get the order of $\langle \alpha, \beta \rangle = 84$.

So if p = 7, then $\partial_k : (Sp(3))_{(7)} \to (\Omega_k^3 Sp(3))_{(7)}$ is not null homotopic for $k \not\equiv 0$ mod 7. Localized at p = 7, $Sp(3) \simeq_7 S^3 \times S^7 \times S^{11}$. So $\partial_k : (S^3 \times S^7 \times S^{11})_{(7)} \to (\Omega_k^3 S^3 \times \Omega^3 S^7 \times \Omega^3 S^{11})_{(7)}$ is not null homotopic for $k \not\equiv 0$ mod 7. Note that

$$\pi_i(S^3; 7) = 0$$
 for $i = 6, 10$, $\pi_{14}(S^3; 7) = Z/(7)$, $\pi_i(S^7; 7) = \pi_i(S^{11}; 7) = 0$ for $i = 6, 10, 14$.

This implies that $\partial_k : (S^3 \times S^{11})_{(7)} \to (\Omega_k^3 S^3 \times \Omega^3 S^{11})_{(7)}$ is not null homotopic for $k \not\equiv 0 \mod 7$. Since $G_2 \simeq_7 S^3 \times S^{11}$, $\partial_k : (G_2)_{(7)} \to (\Omega_k^3 G_2)_{(7)}$ is not null

homotopic for $k \not\equiv 0 \mod 7$. Consider the following:

$$S^{11} \xrightarrow{\iota} S^3 \times S^{11} \xrightarrow{\partial_k} \Omega_k^3 S^3 \times \Omega^3 S^{11} = \Omega_k^3 G_2$$

$$\downarrow p \downarrow$$

$$\Omega_k^3 S^3.$$

Let $\partial_k' = p \circ \partial_k$ and $\partial_k'' = p \circ \partial_k \circ \iota$. Since $(\partial_k)_{\#}$ is nonzero, $(\partial_k'')_{\#}$ is nonzero. We have $h_{\#}: \pi_i(S^{11};7) \to \pi_i(\Omega_k^3 S^3;7)$ is an isomorphism for $i \leq 11$. Note that $\pi_i(\Omega_k^3 S^3;7) = 0$ for $1 \leq i \leq 10$. By J. H. C. Whitehead Theorem, $(\partial_k'')_{*}: H_{11}(S^{11};\mathbb{F}_7) \to H_{11}(\Omega_k^3 S^3;\mathbb{F}_7)$ is also an isomorphism. Hence we have

$$(\partial_k)_*(e_{11}) = \begin{cases} 0, & k \equiv 0 \mod 7 \\ \neq 0, & k \not\equiv 0 \mod 7, \end{cases}$$

where $H_*(G_2; \mathbb{F}_7) = E(e_3, e_{11})$. There is the following homotopy commutative morphism of fibrations:

We have $(\partial_k)_*(e_{11}) = k\beta w_{12}$ for $\beta w_{12} \in H_*(\Omega_k^3 G_2; \mathbb{F}_7)$ up to a choice of a generator. Let $\tau(e_{11}) = v_{10}$ for $v_{10} \in H_*(\Omega G_2; \mathbb{F}_7)$. Then we have that $(\Omega \partial_k)_*(v_{10}) = (\Omega \partial_k)_*(\tau(e_{11})) = \tau((\partial_k)_*(e_{11})) = \tau(k\beta w_{12}) = k\beta u_{11}$.

Consider the following homotopy commutative morphism of fibrations:

$$\Omega G_2 \longrightarrow * \longrightarrow G_2$$

$$\Omega \partial_k \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Omega(\Omega_k^3 G_2) \longrightarrow \mathcal{G}_k(G_2) \longrightarrow G_2.$$

Then we have $\tau(e_{11}) = k\beta u_{11}$ in the Serre spectral sequence converging to $H_*(\mathcal{G}_k(G_2); \mathbb{F}_7)$ for the bottom row fibration. From this we get the conclusion.

References

- [1] M. F. Atiyah and R. Bott, *The Yang-Mills equations over Riemann surfaces*, Phil. Trans. R. Soc. Lond. A **308** (1982), 523-615.
- [2] R. Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv. **34** (1960), 249-256.
- [3] W. Browder, On differential Hopf algebra, Trans. Am. Math. Soc. 107 (1963), 153–176.
- [4] Y. Choi, On the Bockstein lemma, Topology Appl. 106 (2000), no. 2, 217-224.
- [5] _____, Homology of the classifying space of Sp(n) gauge groups, Israel J. Math. 151 (2006), 167-177.
- [6] F. R. Cohen, T. Lada, and J. P. May, The Homology of Iterated Loop Spaces, Lect. Notes. Math. Vol. 533, Springer, 1976.

Г

- [7] M. C. Crabb and W. A. Sutherland, Counting homotopy types of gauge groups, Proc. London Math. Soc. 81 (2000), no. 3, 747-768.
- [8] R. Kane, On loop spaces without p torsion, Pacific J. Math. 60 (1975), no. 1, 189-201.
- [9] A. Kono and S. Tsukuda, 4-manifolds X over BSU(2) and the corresponding homotopy types Map(X, BSU(2)), J. Pure Appl. Algebra 151 (2000), no. 3, 227-237.
- [10] J. P. Lin, On the collapses of certain Eilenberg-Moore spectral sequence, Topology Appl. 132 (2003), no. 1, 29-35.
- [11] G. Masbaum, On the cohomology of the classifying space of the gauge group over some 4-complexes, Bull. Soc. Math. France 119 (1991), no. 1, 1-31.
- [12] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264.
- [13] M. Mimura, The Homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ. 6 (1967), 131–176.
- [14] _____, Homotopy theory of Lie groups, Handbook of algebraic topology edited by I. M. James, North-Holland (1995), 953-991.
- [15] H. Toda, Composition Methods in Homotopy Groups of Spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N. J., 1962.

DEPARTMENT OF MATHEMATICS EDUCATION SEOUL NATIONAL UNIVERSITY SEOUL 151-748, KOREA

E-mail address: yochoi@snu.ac.kr