Lime (CaO) and Limestone ($CaCO_3$) Treatment as the Stabilization Process for Contaminated Farmland Soil around Abandoned Mine, Korea

폐광산 주변 중금속 오염 농경지 토양 복원을 위한 석회(CaO)와 석회암($CaCO_3$)의 안정화 효율 규명

  • Lee, Min-Hee (Department of Environmental Geosciences, Pukyong National University) ;
  • Lee, Ye-Sun (Department of Environmental Geosciences, Pukyong National University) ;
  • Yang, Min-Jun (Department of Environmental Geosciences, Pukyong National University) ;
  • Kim, Jong-Seung (Department of Environmental Geosciences, Pukyong National University) ;
  • Wang, Soo-Kyn (Department of Environmental Exploration Engineering, Pukyong National University)
  • 이민희 (부경대학교 환경지질과학과) ;
  • 이예선 (부경대학교 환경지질과학과) ;
  • 양민준 (부경대학교 환경지질과학과) ;
  • 김종성 (부경대학교 환경지질과학과) ;
  • 왕수균 (부경대학교 환경탐사공학과)
  • Published : 2008.04.28

Abstract

The mixing treatment process using lime (CaO) and limestone ($CaCO_3$) as the immobilization amendments was applied for heavy metal contaminated filmland soils around Goro abandoned Zn-mine, Korea in the batch and pilot scale continuous column experiments. For the batch experiments, with the addition of 0.5 wt.% commercialized lime or limestone, leaching concentrations of As, Cd, Pb, and Zn from the contaminated filmland soil decreased by 70, 77, 94, and 95 %, respectively, compared to those without amendments. For the continuous pilot scale column experiments, the acryl column (30 cm in length and 20 cm in diameter) was designed and granulated lime and limestone were used. From the results of column experiments, with only 2 wt.% of granulated lime, As, Cd, and Zn leaching concentrations decreased by 63%, 97%, and 98%, respectively. With 2 wt.% of granulated limestone, As leaching concentration reduced from 135.6 to 30.2 ${\mu}g/L$ within 5 months and maintained mostly below 10 ${\mu}g/L$, representing that more than 46% diminution of leaching concentration compared to that without the amendment mixing. For Cd and Zn, their leaching concentrations with only 2 wt.% of limestone mixing decreased by 97%, respectively compared to that without amendment mixing, suggesting that the capability of limestone to immobilize heavy metals in the filmland soil was outstanding and similar to that of lime. From the column experiments, it was investigated that if the efficiency of limestone to immobilize heavy metals from the soil was similar to that of lime, the limestone could be more available to immobilize heavy metals from the soil than lime because of low pH increase and thus less harmful side effect.

국내 폐광산 주변 중금속 오염 농경지 토양 복원을 위해 석회(CaO)와 분쇄한 석회암($CaCO_3$)을 안정화제로 이용한 토양 안정화 공법의 효율을 규명하는 배치 및 대형 칼럼실험을 실시하였다. 오염토양은 경북 군위군에 위치한 아연 폐광산 지역의 오염 농경지 토양을 이용하였으며, 안정화제의 함량은 오염토양 대비 0, 0.5, 2, 5%로 다양하게 적용함으로써, 안정화제에 의해 토양으로부터 용출되는 중금속 농도 변화를 시간에 따라 측정하여 안정화제의 중금속 저감 효율을 규명하였다. 배치실험 결과, 가루상의 석회나 석회암 0.5%를 토양과 혼합하여 안정화제로 사용한 경우, 오염토양으로부터 As, Cd, Pb, Zn의 중금속 용출 농도는 안정화제를 사용하지 않은 토양으로부터의 용출 농도를 기준으로 각각 70, 77, 94, 그리고 95% 감소하여 중금속 용출 저감 효과가 매우 높은 것으로 나타났다. 토양 객토법을 모사한 대형 칼럼실험 결과, 2% 입상 석회 첨가에 의해서 As, Cd, Zn의 토양 용출은 안정화제를 사용하지 않은 토양 용출 농도를 기준으로 각각 63, 97, 98% 감소하였다. 입상 석회암을 안정화제로 이용한 칼럼에서는 2% 석회암 첨가에 의해서 As 용출 농도는 135.6${\mu}g/L$에서 30.2 ${\mu}g/L$ 감소하여 약 46% 이상의 감소율을 나타내었으며, Cd와 Zn의 경우에는 97% 이상 감소하였다. 배치 및 칼럼실험 결과 석회암의 중금속 용출 저감 효율이 석회의 저감 효율과 매우 비슷한 것으로 나타나, 토양으로부터 중금속을 안정화시키는데 입상 석회와 석회암 모두 효과가 매우 좋은 것으로 나타났다. 토양 산성화 방지를 위해 토양개량제로 주로 사용하였던 석회의 과도한 토양 내 첨가가 토양의 급격한 pH 증가를 일으켜 농작물 재배에 악 영향을 주게 되는 한계를 극복하기 위하여, 본 배치 및 대형 칼럼실험을 통하여 토양 내 첨가에 의한 pH 증가가 거의 없으며 비용 측면에서도 석회보다 훨씬 저렴하지만 중금속 용출 저감 효과가 비슷한 석회암이 중금속 오염 농경지 토양 복원을 위한 새로운 안정화제로 유용하게 사용될 수 있음을 입증하였다.

Keywords

References

  1. Ahn, J., Chon, C., Moon, H. and Kim, K. (2002) Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems. Water Res., v.37, p.2478-2488 https://doi.org/10.1016/S0043-1354(02)00637-1
  2. Alloway, B.J. (1995) Heavy Metals in Soil. 2nd edi., Blackie Academic & Professional, New York
  3. Bell, F.G. (1996) Lime stabilization of clay minerals and soils. Eng. Geol., v.42, p.49-65
  4. Brady, N.C. and Weil, R.R. (2001) The nature and properties of soils, 13th edi., Prentice Hall, New Jersey
  5. Cha, J., Lee, J. and Lee, M. (2003) Environmental assessment and decision of remediation scope for arsenic contaminated farmland soils and river deposits around Goro abandoned mine, Korea. Econ. Environ. Geol., v.36, p.457-467
  6. Chlopecka, A. and Adriano, D.C. (1996) Mimicked in situ stabilization of metals in a cropped soil: bioavailability and chemical form of zinc. Eviron. Sci. Technol., v.30, p.3294-3303 https://doi.org/10.1021/es960072j
  7. Christensen, T. (1999) Colloidal and dissolved metals in leachates from four Danish landfills. Water Res., v.33, p.2139-2147 https://doi.org/10.1016/S0043-1354(98)00414-X
  8. Clifford, D., Subramonian, S. and Sorg, T.J. (1986) Removing dissolved inorganic contaminants from water. Environ, Sci. Technol., v.20, p.1072-1080 https://doi.org/10.1021/es00153a001
  9. Corner, J.R. (1994) Chemical stabilization of contaminated soils, in D.J. Wilson, A.N. Clarke (Eds.), Hazardous Waste Site Soil Remediation: Theory and Application of Innovative Technologies. Marcel Dekker, New York
  10. Cullinane Jr., M.J., Jones, L.W. and Malone, P.G. (1986) Handbook for Stabilization/Solidification of Hazardous Waste. EPA/540/2-86/001
  11. EPA (1992) Ground Water Issue (Behavior of Metals in Soils). EPA/540/S-92/018
  12. EPA (2000) Solidification/Stabilization Use at Superfund Sites. EPA/542/R-00/010
  13. Halim, C.E., Scott, J.A., Amal, R., Short, S.A., Beydoun, D., Low, G. and Cattle, J. (2005) Evaluating the applicability of regulatory leaching tests for assessing the hazards of Pb-contaminated soils. J. Hazard. Mater., B120, p.101-111
  14. Harvey, C.F., Swartz, C.H., Badruzzaman, A.B.M., Keon- Blute, N., Yu, W., Ali, M.A., Jay, J., Beckie, R., Niedan, V., Brabander, D., Oates, P.M., Ashfaque, K.N., Islam, S., Hemond, H.F. and Ahmed, M.F. (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science, v.298, p.1602-1606 https://doi.org/10.1126/science.1076978
  15. Jones, L.W. (1990) Interference Mechanisms in Waste Stabilization/ Solidification Processes. EPA/600/2-89/067
  16. KARICO (Korea Agricultural and Rural Infrastructure Corporation) (2004) Final Report for Environmental Investigation at Dalcheon Mine. Final Repoart
  17. Lee, M., Lee, J., Cha, J. and Lee, J.M. (2004) Remediation design using soil washing and soil improvement method for As contaminated soils and stream deposits around an abandoned mine. Econ. Environ. Geol., v.37, p.121-131
  18. Lee, M., Paik, I.S., Kim, I., Kang, H. and Lee, S. (2007) Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate. J. Hazard. Mater., v.144, p.208-214 https://doi.org/10.1016/j.jhazmat.2006.10.007
  19. Leist, M., Casey, R.J. and Caridi, D. (2003) The fixation and leaching of cement stabilized arsenic. Waste. Manage., v.23, p.353-359 https://doi.org/10.1016/S0956-053X(02)00116-2
  20. Li, X.D., Poon, C.S., Sun, H., Lo, I.M.C. and Kirk, D.W. (2001) Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials. J. Hazard. Mater., A82, p.215-230
  21. Matlock, M.M., Howerton, B.S. and Atwood, D.A. (2002) Chemical precipitation of heavy metals from acid mine drainage. Water Res., v.36, p.4757-4764 https://doi.org/10.1016/S0043-1354(02)00149-5
  22. MOE (Ministry of Environment, Korea) (2003) Soil Environment Conservation Act of Korea
  23. MOE (Ministry of Environment, Korea) (2005) Final Report of Environmental Investigation for Abandoned Mine in Korea
  24. Raskin, I. and Ensley, B.D. (2000) Phytoremediaion of Toxic Metals: Using Plants to Clean Up the Environment. John Wiley & Sons, New York
  25. Sasowsky, I., Foos, A. and Miller, C. (2000) Lithic controls on the removal of iron and remediation of acidic mine drainage. Water Res., v.34, p.2743-2746
  26. Schifano, V., MacLeod, C., Hadlow, N. and Dudeney, R. (2006) Evaluation of quicklime mixing for the remediation of petroleum contaminated soils. J. Hazard. Mater., v.141, p.395-409
  27. Shi, C. and Fernandez-Jimenez, A. (2006) Stabilization/ solidification of hazardous and radioactive wastes with alkali-activated cements. J. Hazard. Mater., v.137, p.1656-1663 https://doi.org/10.1016/j.jhazmat.2006.05.008
  28. Silva, M.A.R., Mater, L., Souza-Sierra, M.M., Correa, A.X.R., Sperb, R. and Radetski, C.M. (2007) Smell hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal. J. Hazard. Mater., v.147, p.986-990 https://doi.org/10.1016/j.jhazmat.2007.01.128
  29. USDA (2007) http://soils.usda.gov/technical/aids/investigations/texture/
  30. Wang, Y.M., Chen, T.C., Yeh, K.J. and Shue, M.F. (2001) Stabilization of an elevated heavy metal contaminated site. J. Hazard. Mater., B88, p.63-74
  31. Wiles, C.C. (1987) A review of solidification/stabilization technology. J. Hazard. Mater., v.14, p.5-21 https://doi.org/10.1016/0304-3894(87)87002-4
  32. Yukselen, M.A. and Alpaslan, B. (2001) Leaching of metals from soil contaminated by mining activities. J. Hazard. Mater., v.87, p.289-300 https://doi.org/10.1016/S0304-3894(01)00277-1