DOI QR코드

DOI QR Code

Capacity Spectrum Method Based on Inelastic Displacement Ratio

비탄성변위비를 이용한 능력 스펙트럼법

  • Published : 2008.04.30

Abstract

In this study, improved capacity spectrum method (CSM) is proposed. The method can account for higher mode contribution to the seismic response of MDOF systems. The CSM has been conveniently used for determining maximum roof displacement using both demand spectrum and capacity curve of equivalent SDOF system. Unlike the conventional CSM, the maximum roof displacement is determined without iteration using inelastic displacement ratio and R factor calculated from demand spectrum and capacity curve. Three moment resisting steel frames of 3-, 9- and 20-stories are considered to test the accuracy of the proposed method. Nonlinear response history analysis (NL-RHA) for three frames is also conducted, which is considered as an exact solution. SAC LA 10/50 and 2/50 sets of ground motions are used. Moreover, this study estimates maximum story drift ratios (IDR) using ATC-40 CSM and N2-method and compared with those from the proposed method and NL-RHA. It shows that the proposed CSM estimates the maximum IDR accurately better than the previous methods.

본 연구에서는 중고층 건물과 같이 고차모드의 영향이 커지는 구조물의 지진에 대한 성능점을 간략하고 정확하게 구할 수 있는 개선된 능력스펙트럼법을 제안한다. 능력스펙트럼법은 주어진 지진의 응답스펙트럼과 다자유도 구조물을 변환한 등가 단자유도 시스템을 이용하여 지진으로 인하여 발생하는 지붕층의 최대 비탄성변위를 간략하게 구하는 방법이다. 제안된 방법에서는 구조물의 탄성 및 비탄성 동적해석을 수행하지 않고, 기존의 능력스펙트럼법에서 요구되는 정적푸쉬오버해석과 탄성변위를 이용하여 비탄성변위를 예측하는데, 기존 연구에서 개발한 $C_R$을 이용한다. 본 연구는 제안한 방법의 정확도를 평가하기 위해 LA 지역의 3, 9, 20층 철골모멘트저항골조를 선택한다. 이 건물들의 지진에 대한 각 층별 최대 층간변위비를 개발한 CSM으로 구하고, 이를 비선형 응답이력해석(NL-RHA)으로 구한 결과와 비교하였다. 사용한 지진은 재현주기 475년과 2475년의 위험수준에 대한 각각 20개의 지진집단들이다. 또한 본 연구에서는 ATC-40에 제시된 CSM 방법과 N2 방법으로 구한 각 건물의 최대 층간변위비도 비교한다. 개발된 CSM은 기존에 개발된 방법에 비하여 보다 정확한 최대 층간변위비를 예측하는 것으로 나타났다.

Keywords

References

  1. Applied Technology Council, "Seismic evaluation and retrofit of concrete buildings,"Report ATC-40, Redwood City, Calif., 1996
  2. Federal Emergency Management Agency. "NEHRP guidelines for the seismic rehabilitation of buildings,"Report FEMA 273 (Guidelines) and Report. 274 (Commentary), Washington, D.C. 1997
  3. Nassar, A. A., and Krawinkler, H. "Seismic demands for SDOF and MDOF systems." Report TR-95, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA. 1991
  4. Gupta, A., and Krawinkler, H. "Seismic demands for performance evaluation of steel moment resisting frame structures." Report TR-132, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA. 1999
  5. Miranda, E. "Estimation of inelastic deformation demands of SDOF systems," Journal of Structural Engineering, ASCE, 127(9), 2001, pp. 1005-1012 https://doi.org/10.1061/(ASCE)0733-9445(2001)127:9(1005)
  6. Kim, S., and D'Amore, E. "Push-over analysis procedure in earthquake engineering." Earthquake Spectra, 15(3), 1999, pp. 417-434 https://doi.org/10.1193/1.1586051
  7. H. Krawinkler and G. D. P. K. Seneviratna, "Pros and cons of a pushover analysis of seismic performance evaluation" Engineering Structures, 20, 1998, pp. 452-464 https://doi.org/10.1016/S0141-0296(97)00092-8
  8. Chopra, A. K., and Goel, R. K. "Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures : SDF systems, Report PEER-1999/02." Pacific Earthquake Engineering Research Center, Univercity of California, Berkeley, CA. 1999
  9. Fajfar, P. "Capacity spectrum method based on inelastic demand spectra." Earthquake Engineering and Structural Dynamics, 28, 1999, pp. 979-993 https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<979::AID-EQE850>3.0.CO;2-1
  10. Fajfar, P. "A nonlinear analysis method for performance based seismic design." Earthquake Spectra, 16(3), 2000, pp. 573-592 https://doi.org/10.1193/1.1586128
  11. Freeman, S. A. "Review of the development of the capacity spectrum method." ISET Journal of Earthquake Technology, 41(1), 2004, pp. 1-13
  12. Chopra, A. K., Goel, R. K., and Chintanapakdee, C. "Statistics of SDF-systems estimate of roof displacement for pushover analysis of building." PEER Report 2001/16, Pacific Earthquake Engineering Research Center, Univercity of California, Berkeley, CA. 2001
  13. Chopra, A. K., and Goel, R. K. "A modal pushover analysis procedure to estimate seismic demands for buildings : theory and preliminary evaluation. "PEER 2001/03, Pacific Earthquake Engineering Research Center, Univercity of California, Berkeley, CA. 2001
  14. Chintanapakdee, C., and Chopra, A. K. "Evaluation of modal pushover analysis using generic frames." Earthquake Engineering and Structural Dynamics, 32, 2003, pp. 417-442 https://doi.org/10.1002/eqe.232
  15. Chopra, A. K., and Goel, R. K. "Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands." Earthquake Spectra, 20(3), 2004, pp. 757-778 https://doi.org/10.1193/1.1775237
  16. Goel, R. K., and Chopra, A. K. "Evaluation of modal and FEMA pushover analyses : SAC buildings." Earthquake Spectra, 20(1), 2004, pp. 225-254 https://doi.org/10.1193/1.1646390
  17. Goel, R. K. "Evaluation of modal and FEMA pushover procedures using strong-motion records of buildings." Earthquake Spectra, 21(3), 2005, pp. 653-684 https://doi.org/10.1193/1.1979501
  18. 한상환, 배문수, 조종 "이선형 단자유도 감쇠시스템의 비탄성 변위비" 지진공학회 Vol. 11, No. 6, 2007 https://doi.org/10.5000/EESK.2007.11.6.053
  19. Chopra, A. K. "Dynamics of Structures: Theory and Applications to Earthquake Engineering" Prentice Hall, Englewood Cliffs, NJ. 2001
  20. Prakash, V., Powell, G.H., and Campbell, S. "Drain-2DX base program description and user guide ver 1.10" Report No. UCB/SEMM-93/17, Earthquake Engineering Research Center (EERC), Univercity of California, Berkeley, CA. 1993
  21. Prakash, V., Powell, G.H., and Campbell, S. "Drain-2DX element description and user guide ver 1.10" Report No. UCB/SEMM-93/18, Earthquake Engineering Research Center (EERC), Univercity of California, Berkeley, CA. 1993