SR i e o

Vol, 14, No. 1, P, 11~16

Real-time Soft Shadowing of Dynamic Height Map
Using a Shadow Height Map

Sung-Ho Lee?

Chang-Hun Kim

Korea University

(pocorall, chkim)@korea.ac.kr

294 Fo] WL 04T AAR 218A

3
e
=

Rk !

st Axe et

Abstract

This paper introduces a novel real-time soft shadowing method applicable for height maps. As well as supporting self-shadowing
of the height map, our method allows shadows to be caught on other objects. The method is very suitable for dynamically changing
height maps because it requires no precomputation. A shadow height map (SHM) is a new structure which represents the height of the
shadow at each discretized coordinate of a height map. Constructing the SHM is O(n), where n is the number of texels in the SHM.
Shadow can be computed from this map quickly and simply, using a pixel shader. Examples demonstrate good real-time performance
and plausible visual quality.

& o

B eRodE AW Wo) AAGeR REag TUAE Sl wHo o awh of WHe AZ AR B
el T2 B0l 1AAE S8k AR sHsstth £ o BEL AF) Bl w2 AL FE Aol §l7l WE
A @o] Wetetis 4 $ol= AUt Shadow height mapSHM)o| et A28 ART2E Rol Wl 2 Fuo IPahe
7e) 20l 2 7] 2@ Th n o] SHM go] S W4 Sek3 @ o, SHM & A4SH: 22 09| &% BYES 71
DA o) YL ol $o) BaI T WA AT 4 Ytk AHES YAGOE FAY 5 A FL 45E Hold, FYB

ANAH AL HA

A= AAZL 3P Y e a9F
Keywords : Real-time shadow; soft shadow

1. Introduction

Shadow provides important visual cues about a scene. Many
methods of computing shadows at interactive rate have been
proposed. However, shadows are sparingly used in practice
because they impose significant performance degradation on the
application. Shadowing in real time is still a challenging prob-
lem.

We focus on shadowing for height map structure. Height
maps are widely used to render terrain [3], bump mapping [1] or
relief mapping [7][12]. A height map is tessellated into huge
number of triangles. Therefore shadowing methods designed for
arbitrary triangles such as shadow volume [2] and shadow map-
ping [13] are too slow. For this structure, horizon mapping [4][9]
and ambient aperture lighting [6] can be considered. But these
methods require precomputation, and do not allow casting sha-
dows on other objects. We propose a new method with the fol-
lowing features:

® Cast shadows on other objects.

® No precomputation is required.
® Fast computation.
® Can generate hard or approximated soft shadows.

Because our method does not require precomputation, the
height map can be changed dynamically, allowing to be applied
to dynamically changing height map surface such as water and
bombarded terrain or incorporated in interactive modeling tools.

In most practical applications, other objects are placed on the
height map. It is indispensable to cast shadows to the objects
near the surface. While other methods [6][9] do not aliow this,
our method allows it by simple implementation.

We introduce shadow height map (SHM), which represents
the height of the shadow at each coordinate on a grid. The SHM
is calculated in the CPU, and transferred to the GPU as a texture.
Shadow testing can be performed in a pixel shader. There is no
difference between testing the visibility of the height map itself
and that of other objects. The same shader program and SHM
texture are used in each case.

- 11 -

Casting shadows in parallax occlusion mapping [12] is
usually performed by ray marching with a given sampling step,
and then testing whether the incremented ray intersects with the
height map. This needs to be performed for every pixel on the
screen individually. Although this testing loop can be imple-
mented in the GPU, that would make it a major performance
bottleneck. There is a chance to optimize this hot spot because
several different pixels invoke the intersection testing subrou-
tine for the same location during the ray marching.

In computing the SHM, rays march from the light, not from
the fragment. Calculating shadow height requires no subloop
for a location because it utilizes ray marched result of previous
step. The process is similar to dynamic programming.

Although a SHM does not deal with area light source, soft
shadows can be approximated by specifying penumbra depth.
The shadow has constant depth of penumbra. Although this is
not a physically accurate model, the result is visually plausible.

2. Related works

Our method calculates height of shadowed area as a map. It
is similar to shadow maps [13] which are aligned to the direc-
tion of the light, but the SHM is aligned to accompanying
height map. Shadow mapping requires additional rendering pass
to construct the map, but calculating the SHM only depends on

the height map, and is done by much simple arithmetic than that.

A horizon mapping [4][9] precalculates horizon of sampled
directions for each texel. Usually, the region is sampled in 8
directions, and horizons in other directions are approximated by
a circular basis function [9]. Sharp features, such as the shadow
from a thin tall tower, can be missed by this procedure.

Precomputed radiance transfer (PRT) [10] allows interesting
effects, such as soft shadows, subsurface scattering, glossy ma-
terials, and interreflection to be achieved in real time. In recent
works [8] shadows can be casted onto other objects within a
dynamic scene. However, these methods are not feasible for a
large scale height maps because the memory requirements are
large or some properties (light, view, or geometry) must be as-
sumed to be static. Moreover, PRT is not feasible to cast sharp
shadow.

It is possible for objects to cast shadows onto other objects
by storing the transferred radiance for ambient space [5]. But
the resulting shadows are too smooth and a lot of memory is
required to sample ambient radiance in 3D.

Ambient aperture lighting [6] is a less computationally inten-
sive approach than PRT. A spherical cap is precalculated for
each location, and a visibility test is performed in real time us-
ing only simple arithmetic. It is a fast way to calculate soft self-
shadows, but it still requires precomputation.

3. Shadow height map

We define a shadow height map y = S(x, z) € R that stores
height information of shadow at location (x,z) € Z2. A SHM
can be discretized as a texture that has the same resolution and
transformation with an accompanying height map (Figure 1). A

separate SHM is required for each light source and a SHM must
be recalculated when either the direction of its light source or
the height map is changed. If the value of the height map
H(x, z) is smaller than S(x, z) at some location, than that loca-
tion is shadowed.

+

Height map

V{/ Unshadowed area
/ N\

Shadowed area

Shadow height map

Figure 1: Shadow height map stores the height values in
which we can start to see the light source for each location
on a height map.

?
L_l‘__‘; E:i __,_’_,\\\\\\\ SXorf

"""‘—»—«»-—»-—p;

=Yy
@:H—»~+~¢ ‘\\
—~ o U\
NN

T
et "

(a) (b)

Figure 2: Calculate the values of the closest locations from
light source (red dots) first, and propagate them. There are
two types of SHM. (a) Type 1: axis aligned directional light.
(b) Type 2: a directional light.

The method of calculating a SHM depends on the light
source. We will consider two types of light, looking first at the
simplest case.

3.1. Calculating SHM

A type 1 shadow is cast by a directional light aligned with
the axis of the SHM. The SHM function S, (x, z, 14, l,) has four
parameters: two integers for the coordinate (x, z), the direction
of the light [; and the tangent of altitude of the light ,. Because
the calculation is the same for the 4 cardinal directions of {; (E,
W, S, and N), we will only describe the case of light coming
from the west (Figure 2 a). And for more simplicity, we will
assume unit distance between each texel. The SHM can be cal-
culated as

51(0,2) = H(0,2),

$1(x,2) = max{H(x,z),S,(x — 1,z) — sl;}, 0))
where x # 0 ai u s is a scaling constant. The height of the sha-
dow is the larger value between height of current terrain and
propagated height of shadow. Because Equation (1) is recur-

212 -

rence form with respect to x, we can calculate entire map from
x=0.

A type 2 shadow is cast by a light coming in any direction.
The direction of the light is the three-dimensional vector
1=(,, I, 1;), wherel, and [, are the texture coordinates and
L, is the direction of height. When 0 < [, < [, (Figure 2 b), the
SHM is

S,(0,0) = H(0,0),

$,(0,2) = H(0,2),

$,(x,0) = H(x,0),

$(x, z) = max{H(x,2), Sy (x ~ x5,z — 1) — sk},
where x # 0,z # 0,x,7f = [, /l; and k = 1, /1. Although the
formula looks complicated, the principle is the same with type 1
shadow.

Because 0 < x,¢5 < 1, the location of a texel is not quan-
tized, it must be linearly interpolated. The equations above only
cover 1/8 of the possible directions. The equations for the other
directions are similar.

3.2. Determining shadow from the SHM

Testing light visibility is simple. A given position p =
(s Dy, P.) € R is shadowed when p, < S(p,, p,). Because
SHM has information at discretized coordinate, bilinear interpo-
lation is used. This filtering is done by GPU.

However, depth fighting can occur due to round-off errors
and filtering. We tried to introduce a shadow depth offset,
which is common way to accommodate round-off error. But the
approximation error due to texture filtering is more severe. So
we devised another method, which not only accommodates
round-off error, but also simulates soft shadow. We introduce a
penumbra depth dp., . When S(py, p7) — dpen <py <
S(px pz), we linearly interpolate the shaded color between the
brightest color €y;gneeneq and the ambient color Compient

_ S(px' pz) — Dy
a4=—"=",
dpen
C = Q@Campient + (1 - a)cligntenedr
where ¢ is the result color which is applied in the shadow.

4. Implementation

Because our algorithm uses two dimensional arrays, correct
utilization of the CPU cache is important. Random access to the
memory leads to many cache miss and results in severe perfor-
mance degradation. Reading and writing to this memory should
be as sequential as possible. We parameterized a two-
dimensional square map 4 to memory addresses M as follows;
A(x,z) = M(x + zw) where w is the width of the map. The
form of the calculation differs depending on the direction of the
incoming light. Figure 3 and the pseudocode below describe the
calculation for the first two quadrants.

Q = quadrant of direction of incoming light
If(Q=1) { //light from quadrant 1
For(each z from 0 to w) {

For{each x from 0 to w) {
Calculate S(x, z)

}
If(Q=2) { // light from quadrant 2
For(each z from 0 to w) {
For{each x from w to 0) {
Calculate S(x, z)
}
}

// Code for other quadrants is similar.

We observed that this iteration order utilizes cache more
than traversing z-axis as an inner loop.

Quadrant 1 Quadrant 2
yRoverse
t I 2 e
0 X
w
D Mxizw)
u
VReverse
2Rueversy 4 Reversy
Quadrant 4 Quadrant 3

Figure 3: Orders of array parameterization and shadow
calculation: Q2 and Q3 iterate along the x-axis in a negative
direction, Q3 and Q4 iterate along the z-axis, also in a nega-
tive direction.

We implemented the algorithm with the C++ and the Cg
language, and used the Ogre3D graphics library. The SHM is
stored as a 32-bit floating-point type texture. However, only the
latest graphics processors support bilinear texture filtering for
32-bit floating-point texture. Commodity hardware supports 16-
bit floating-point texture filtering, but an additional overhead is
required for the conversion.

The shadow receiver program determines whether a position
is shadowed or not. It can be implemented as either a vertex or a
pixel shader program. Because our algorithm is simple and cur-
rent GPUs provide enough power for a pixel shader, we imple-
mented it in that form. The source code is provided in the ap-
pendix.

5. Results

All the images presented in this paper are rendered with a
GeForce 8800GTS which supports 32-bit floating-point texture
filtering. The host system was an Intel Core 2 Duo 2.4GHz
CPU with 2GB of system memory. Our program is single
threaded.

We rendered terrain data sampled at various resolutions
(Table 1). For comparison, we rendered the same data without

- 13 -

using our algorithm, and also tried transferring the texture to the
GPU at every frame only without computing the shadows to
measure the bandwidth overhead.

The most expensive operation of building the SHM is mem-
ory access in a loop. Type 2 shadows read three numbers from
memory and write one number to it for each texel. As seen in
Table 1, severe performance degradation which exceeds algo-
rithm complexity is observed at the highest resolution, because
of poor CPU cache hit. This is less noticeable in a resolution of
5127 or less, which utilizes the cache enough.

SHM dimension 256° 5122 | 1024
Triangle count 132K 528K | 1.6M
No shadow (fps) 765 382 122
Texture transfer (fps) 719 330 83
Type t shadow (fps) 711 325 76
Type 2 shadow (fps) 708 308 49
Shadow volume [2] (fps) | 212 58 17

Table 1: Frame rate of algorithms for data at various reso-
lutions. Our method is significantly faster than the shadow
volume [2]. A screen resolution is 1600 x 1200.

R A ‘&tlf LV A ¢
Figure 4: Terrain rendered without (top) and with shadow
(bottom).

Figure 4 compares the performance of rendering using an N
dot L lighting and model with our shadowing method. The more
extensive and more realistic shadowing is clearly apparent.

Figure 5 and the accompanying video show an example of
shadowing on a changing height surface. Using the SHM, this
involves no extra cost.

Figure 6 compares results of soft shadowing with various
penumbra depth values. When calculating a type 2 SHM, a k-
near interpolation is involved to propagate shadow height. It is
not exact because the interpolation diffuses the height map. But
this can be a good chance to simulate soft shadow. By simply
specifying enough penumbra depth, soft shadow can be shown
with very little cost.

Figure 7 shows an example of shadows being cast on to oth-
er objects. The same shadow receiver program is used for both
the terrain and separate objects. Notice that the penumbra effect
is also present in the shadow casted on the house in this figure.

height map (see the video).

- 14 -

d =70 d,=40
d_=10 d_ =01

Figure 6: A penumbra depth allows soft shadow. This in-
volves only one linear interpolation.

Figure 7: A shadow created from a height map is casted bn
to a separate object.

Some objects placed on the ground can be approximated to
the height field. We construct the height field according to
height of the object, and ‘cap’ the object on the height field, as
shown in inset image of Figure 8. Then the height field cast a
shadow which roughly mimics the shadow of the object. This
method is especially useful for games and interactive city envi-
ronment modeler, because objects can be dynamically placed
and removed.

6. Summary and future work

We have introduced a novel method of modeling soft sha-
dow from a height map and casting it on to an arbitrary object.
This method is simple to implement, fast, and it does not re-
quire any precomputation.

A noticeable drop in performance occurs because of the
bandwidth bottleneck when the SHM texture is transferred from
the system memory to GPU memory for every frame. Another
performance hot spot is accessing main memory in CPU. Be-
cause the GPU is more suited to texture access, calculating the
SHM on a GPU would greatly improve the performance. But
implementing it is a challenging problem because of sequential
nature of the algorithm.

For visualizing high resolution terrain data, several level-of-
detail methods are developed such as [3]. Adapting SHM for
this type of data structures would be an interesting extension.

Policarpo et al. [7] has shown that a relief mapped surface
can correctly intersect with another object. Although we did not
implement the SHM for relief mapping, we expect the relief
geometry could successfully cast shadow on to an intersected
object. This may be demonstrated in future work.

References

[11 Blinn J. F., Simulation of Wrinkled Surfaces, ACM SIGGRAPH,
1978, 286-292.

[2] Crow F., Shadow Algorithms for Computer Graphics, ACM
SIGGRAPH, 1977, pp. 242-248.

[3] Losasso, F., and Hoppe, H., Geometry clipmaps: terrain render-
ing using nested regular grids. ACM SIGGRAPH, 2004, 769-776.

[4] Max N. L., Horizon mapping: shadows for bump-mapped surfac-
es. The Visual Computer 4, 2, 1988, 109117,

[5] Oat C., "Irradiance Volumes for Games," Proc. Game Develop-
ers Conference, 2005,

[6] Oat C. and Sander P. V., Ambient Aperture Lighting. Proceed-
ings of 2007 simposium on interactive 3D graphics and games,
2007, 61-64.

[7]1 Policarpo F., Oliveira M. M., and Comba J., Real-Time Relief
Mapping on Arbitrary Polygonal Surfaces. ACM SIGGRAPH,
2005, 935.

[8] Ren, Z., Wang, R., Snyder, J., Zhou, K., Liu, X., Sun, B., Sloan,
P.P.,, Bao, H., Peng, Q., and Guo, B., Real-time soft shadows in
dynamic scenes using spherical harmonic exponentiation. ACM
SIGGRAPH, 2006, 955-966.

[9] Sloan P.-P. J. and Cohen M. F., Interactive Horizon Mapping.
Proc. Eurographics Workshop on Rendering, 2000, 281-286.

{10] Sloan P.-P. J., Kautz J., and Snyder J., Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency light-
ing environments. ACM SIGGRAPH, 2002, 527-536.

[11] Sun, W., and Mukherjee, A., Generalized wavelet product
integral for rendering dynamic glossy objects. ACM SIGGRAPH,
2006. 955-966.

{12] Tatarchuk N., Dynamic parallax occlusion mapping with approx-
imate soft shadows. In Symposium on Interactive 3D graphics
and games, 2006, 63-69.

[13] Williams, L., Casting Curved Shadows on Curved Surfaces,
ACM SIGGRAPH, 1978, 270-274.

- 15 -

N \

Ny 2 i
Figure 8: Soft shadows of houses. We constructed a height map

Appendix: Shadow receiver Cg pixel

shader program

void main_{p(float3 position : TEXCOORDO,

float2 texCoord : TEXCOORDI,

float shade : TEXCOORD?2,

out float4 color : COLOR,

uniform float ambient,

uniform float penumbraDepth,

uniform sampler2D heightTexture,

uniform sampler2D diffuseTexture)
{
// position is pre-scaled to heightTexture coordinate
float shadowHeight = tex2D(heightTexture, position.xz).r;
float penumbra = clamp((shadowHeight-position.y)/penumbraDepth, 0, 1);
float lightness = ambient+ lerp(shade, 0.0, penumbra);
color = lightness * tex2D(diffuseTexture, texCoord);

}

- 16 -

according to the shape of the houses (upper right). Note tha
the soft shadow of the chimney is casted naturally on the roof. This scene is rendered at 220fps with a resolution of 1600 x
1200. A size of the SHM is 5127,

