대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: I. 모형설명

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part I. Model Description

  • 발행 : 2008.04.30

초록

지표수 흐름은 육지 물수지 계산에 중요한 요소중에 하나이다. 그러나, 기상변화의 예측과 그로 인한 방재대책수립을 위한 대규모의 기상모형과 연계되는 육지수문모형(Land Surface Model, LSM)들은 지표수 흐름을 토양수분수지로부터 간단하게 산정하고 있다. 침투계산에서 지표수 흐름깊이를 무시하는 것은 지표면 및 지표하 물흐름 모두에 계산상 오류를 초래할 수 있다. 그러므로, 육지수문모형에서 종합적인 물과 에너지 순환 예측을 하기 위해, 지표수 흐름을 위한 1차원 확산모형과 지표하 물흐름을 위한 계산망 체적평균 토양수분이송(Volume Averaged Soil-moisture Transport Model, VAST)모형을 연계하는 대규모 지표면 및 지표하 연계 물흐름 모형이 개발되었다. 이 논문에서는, 최첨단 육지수문모형중 하나인 CLM(Common Land Model)내의 지표수리수문 모의를 위한 주요부분을 비롯하여, 지형특성에 따른 지표수 흐름과 공간적 토양수분 분포의 예측개선을 위한 새로운 지표면 및 지표하 연계 물흐름 모형에 대해 기술하였다.

The surface runoff is one of the important components for the surface water balance. However, most Land Surface Models(LSMs), coupled to climate models at a large scale for the prediction and prevention of disasters caused by climate changes, simplistically estimate surface runoff from the soil water budget. Ignoring the role of surface flow depth on the infiltration rate causes errors in both surface and subsurface flow calculations. Therefore, for the comprehensive terrestrial water and energy cycle predictions in LSMs, a conjunctive surface-subsurface flow model at a large scale is developed by coupling a 1-D diffusion wave model for surface flow with the 3-D Volume Averaged Soil-moisture Transport(VAST) model for subsurface flow. This paper describes the new conjunctive surface-subsurface flow formulation developed for improvement of the prediction of surface runoff and spatial distribution of soil water by topography, along with basic schemes related to the terrestrial hydrologic system in Common Land Model(CLM), one of the state-of-the-art LSMs.

키워드

참고문헌

  1. Abramopoulos, F., Rosenzweig, C., and Choudhury, B. (1988) Improved ground hydrology calculations for Global Climate Models (GCMs): Soil water movement and evapotranspiration. J. Climate, Vol. 1, pp. 921-941 https://doi.org/10.1175/1520-0442(1988)001<0921:IGHCFG>2.0.CO;2
  2. Akan, A.O., and Yen, B.C. (1981) Diffusion-wave flood routing in channel networks. J. Hydraul. Div., ASCE, Vol. 107, No. 6, pp. 719-732
  3. Beven, K. J., and Kirkby, M. J. (1979) A physically based variable contributing area model of basin hydrology. Hydrol. Sci. Bull., Vol. 24, No. 1, pp. 43-69 https://doi.org/10.1080/02626667909491834
  4. Bonan, G.B. (1996) A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies. Technical description and User's guide, NCAR Tech. Note, NCAR/TN-417+STR, Boulder, CO.,
  5. Boone, A., and Wetzel, P.J. (1996) Issues related to low resolution modeling of soil moisture: Experience with the PLACE model. Global and Plan. Change, Vol. 13, pp. 161-181 https://doi.org/10.1016/0921-8181(95)00044-5
  6. Chen, J., and Kumar, P. (2001) Topographic influence on the seasonal and interannual variation of water and energy balance of basin in North America. J. Climate, Vol. 14, pp. 1989-2014 https://doi.org/10.1175/1520-0442(2001)014<1989:TIOTSA>2.0.CO;2
  7. Choi, G.W., and Molinas, A. (1993) Simultaneous solution algorithm for channel network modeling. Water Resour. Res., Vol. 29. No. 2, pp. 321-328 https://doi.org/10.1029/92WR01949
  8. Choi, H.I., Kumar, P., and Liang, X.-Z. (2007) Three-dimensional volume-averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability. Water Resour. Res., Vol. 43, W04414, doi:10.1029/2006WR005134
  9. Clapp, R.B., and Hornberger, G.M. (1978) Empirical equations for some soil hydraulic properties. Water Resour. Res., Vol. 14, pp. 601-604 https://doi.org/10.1029/WR014i004p00601
  10. Corradini, C., Morbidelli, R., and Melone, F. (1998) On the interaction between infiltration and hortonian runoff. J. Hydrol., Vol. 204, pp. 52-67 https://doi.org/10.1016/S0022-1694(97)00100-5
  11. Cosby, B.J., Hornberger, G.M., Clapp, R.B., and Ginn, T.R. (1984) A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20, 682-690 https://doi.org/10.1029/WR020i006p00682
  12. Dai, Y., and Zeng, Q.-C. (1997) A land surface model (IAP94) for climate studies, Part I: Formulation and validation in off-line experiments. Adv. Atmos. Sci., Vol. 14, 433-460 https://doi.org/10.1007/s00376-997-0063-4
  13. Dai, Y., Zeng, X., Dickinson, R.E., Baker, I., Bonan, G.B., Bosilovich, M.G., Denning, A.S., Dirmeyer, P.A., Houser, P.R., Niu, G., Oleson, K.W., Schlosser, C.A., and Yang Z.-L. (2003) The Common Land Model. Bull. Amer. Meteor. Soc., Vol. 84, pp. 1013-1023 https://doi.org/10.1175/BAMS-84-8-1013
  14. Dickinson, R.E., Henderson-Sellers, A., Kennedy, P.J., and Wilson, M.F. (1993) Biosphere?Atmosphere Transfer Scheme (BATS) version le as coupled to Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, pp. 72
  15. Hromadka II, T.V., McCuen, R. H., and Yen, B.C. (1987) A comparison of overland flow hydrograph models. J. Hydraul. Div., ASCE, Vol. 113, No. 11, pp. 1422-1440 https://doi.org/10.1061/(ASCE)0733-9429(1987)113:11(1422)
  16. Jha, R., Herath, S., and Musiake, K. (2000) River network solution for a distributed hydrological model and applications. J. Hydrol. Process., Vol. 14, No. 3, pp. 575-592 https://doi.org/10.1002/(SICI)1099-1085(20000228)14:3<575::AID-HYP955>3.0.CO;2-N
  17. Kazezyilmaz-Alhan, C.M., Medina Jr., C.C., and Rao, P. (2005) On numerical modeling of overland flow. Applied Mathematics and Computation, Vol. 166, No. 3, pp. 724-740 https://doi.org/10.1016/j.amc.2004.06.063
  18. Liang, X.-Z., Choi, H. I., Kunkel, K. E., Dai, Y., Joseph, E., Wang, J. X. L., and Kumar, P. (2005) Surface boundary conditions for mesoscale regional climate models. Earth Interactions, Vol. 9, No. 18, pp. 1-28
  19. Mahrt, L., and Pan, H. (1984) A two-layer model of soil hydrology. Boundary-Layer Meteorology, Vol. 29, pp. 1-20 https://doi.org/10.1007/BF00119116
  20. Morita, M., and Yen, B.C. (2002) Modeling of conjunctive twodimensional surface-three-dimensional subsurface flows. J. Hyd. Eng., Vol. 128, No.2, pp. 184-200 https://doi.org/10.1061/(ASCE)0733-9429(2002)128:2(184)
  21. Niu, G.-Y., and Yang, Z.-L. (2003) The Versatile Integrator of Surface and Atmosphere processes (VISA) Part II: Evaluation of three topographybased runoff schemes. Global Planet. Change, Vol. 38, pp. 191-208 https://doi.org/10.1016/S0921-8181(03)00029-8
  22. Niu, G.-Y., and Yang, Z.-L. (2006) Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeorol., Vol. 7, No. 5, pp. 937- 952 https://doi.org/10.1175/JHM538.1
  23. Niu, G.-Y.,Yang, Z.-L., Dickinson, R.E., and Gulden, L.E. (2005). A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in GCMs. J. Geophys. Res., Vol. 110, D21106, doi:10.1029/2005JD006111
  24. Ponce, V.M., Li R.-M., Simons D.B. (1978) Applicability of kinematic and diffusion models, J. Hydr. Div., ASCE, Vol. 104, No. 3, pp. 353-360
  25. Richards, L. (1931) Capillary conduction of liquids through porous mediums. Physics, Vol. 1, pp. 318-333 https://doi.org/10.1063/1.1745010
  26. Sevuk, A.S., and Yen, B.C. (1973) Comparison of four approaches in routing flood wave through junctions. Proc., 15th Int. Assoc. of Hydraulic Engineering and Research Congress, Vol. 5, pp. 169-172
  27. Smith, R.E., and Woolhiser, D.A. (1971) Overland flow on an infiltrating surface. Water Resour. Res., Vol. 7, pp. 899-913 https://doi.org/10.1029/WR007i004p00899
  28. Tsai, C.W.-S., and Yen, B.C. (2001) On noninertia wave versus diffusion wave in flood routing.' J. Hydrology, Vol. 244, No. 1-2, pp. 97-104 https://doi.org/10.1016/S0022-1694(00)00422-4
  29. Wallach, R., Grigorin, G., and Rivlin J. (1997) The errors in surface runoff prediction by neglecting the relationship between infiltration rate and overland flow depth. J. Hydrol., Vol. 200, No. 1-4, pp. 243-259 https://doi.org/10.1016/S0022-1694(97)00017-6
  30. Zeng, X., Shaikh, M., Dai, Y., Dickinson, R.E., and Myneni, R. (2002) Coupling of the Common Land Model to the NCAR Community Climate Model. J. Climate, Vol. 14, pp. 1832-1854