DOI QR코드

DOI QR Code

Testing for Overdispersion in a Bivariate Negative Binomial Distribution Using Bootstrap Method

이변량 음이항 모형에서 붓스트랩 방법을 이용한 과대산포에 대한 검정

  • 전명식 (고려대학교 통계학과) ;
  • 정병철 (서울시립대학교 통계학과)
  • Published : 2008.04.30

Abstract

The bootstrap method for the score test statistic is proposed in a bivariate negative binomial distribution. The Monte Carlo study shows that the score test for testing overdispersion underestimates the nominal significance level, while the score test for "intrinsic correlation" overestimates the nominal one. To overcome this problem, we propose a bootstrap method for the score test. We find that bootstrap methods keep the significance level close to the nominal significance level for testing the hypothesis. An empirical example is provided to illustrate the results.

본 연구에서는 이변량 음이항 분포에서 과대산포와 "내재적 상"의 존재유무에 대한 가설검정 문제를 다루었다. 과대산포에 대한 스코어 검정의 표준정규분포 근사는 명목 유의수준을 과소추정한 반면 "내재적 상"에 대한 스코어 검정은 명목유의수준을 과대 추정하고 있음을 보였다. 본 연구에서는 이와 같은 스코어 검정의 표준정규분포 근사의 문제점을 해결하기 위하여 붓스트랩 방법을 제안하였다. 스코어 검정에 대한 붓스트랩 방법은 두 검정에서 명목유의수준을 제대로 유지하고 검정력도 높게 나타나 스코어 검정의 표준정규분포 근사에 존재하는 문제를 해결하는 효율적인 대안으로 판단된다.

Keywords

References

  1. Bates, G. E. and Neyman, J. (1952). Contributions to the theory of accident proneness, I: An optimistic model of correlation between light and severe accidents, University of California Publications in Statistics, 1, 215-254
  2. Cresswell, W. L. and Froggatt, P. (1963). The Causation of Bus Driver Accidents, Oxford University Press, London
  3. Dean, C. and Lawless, J. F. (1989). Tests for detecting overdispersion in poisson regression models, Journal of the American Statistical Association, 84, 467-472 https://doi.org/10.2307/2289931
  4. Gurmu, S. (1991). Tests for detecting overdispersion in the positive poisson regression model, Journal of Business & Economic Statistics, 9, 215-222 https://doi.org/10.2307/1391790
  5. Holgate, P. (1964). Estimation for the bivariate poisson distribution, Biometrika, 51, 241-245 https://doi.org/10.1093/biomet/51.1-2.241
  6. Johnson, N. L., Kotz, S. and Balakrishnan, N. (1997). Discrete Multivariate Distributions, John Wiley & Sons, New York
  7. Jung, B. C., Jhun, M. and Han, S. M. (2007). Score tests for overdispersion in the bivari- ate negative binomial models, Journal of Statistical Computation and Simulation, To appear
  8. Jung, B. C., Jhun, M. and Lee, J. W. (2005). Bootstrap tests for overdispersion in a zero inflated poisson regression model, Biometrics, 61, 626-628 https://doi.org/10.1111/j.1541-0420.2005.00368.x
  9. Jung, B. C., Jhun, M. and Song, S. H. (2006). Testing for overdispersion in a censored poisson regression model, Statistics, 40, 533-543 https://doi.org/10.1080/02331880601012884
  10. Kocherlakota, S. and Kocherlakota, K. (1992). Bivariate Discrete Distributions, Marcel Dekker, New York
  11. Kocherlakota, S. and Kocherlakota, K. (2001). Regression in the bivariate poisson distri-bution, Communications in Statistics - Theory and Methods, 30, 815-825 https://doi.org/10.1081/STA-100002259
  12. Kocherlakota, K. and Kocherlakota, S. (1985). On some tests for independence in non-normal situations: Neyman'S C($\alpha$) test, Communications in Statistics - Theory and Methods, 14, 1453-1470 https://doi.org/10.1080/03610928508828987
  13. Marshall, A. W. and Olkin, I. (1990). Multivariate distributions generated from mixtures of convolution and product families, by H.W. Block, A.R. Sampson and T.H. Savits, In Topics in Statistical Dependence Institute of Mathematical Statics Lecture Notes - Monograph Ser., 16, 372-393
  14. Subrahmaniam, K. (1966). A test for \intrinsic correlation' in the theory of accident proneness, Journal of the Royal Statistical Society, Ser. B, 28, 180-189
  15. Subrahmaniam, K. and Subrahmaniam, K. (1973). On the estimation of the parameters in the bivariate negative binomial distribution, Journal of the Royal Statistical Society, Ser. B, 35, 131-146
  16. Verbeke, G. and Molenberghs, G. (2003). The use of score tests for inference on variance components, Biometrics, 59, 254-262 https://doi.org/10.1111/1541-0420.00032