A Simple Numerical Procedure for Assessing the Effect of Ground Improvement Around a Circular Tunnel Excavated in Mohr-Coulomb Rock Mass

Mohr-Coulomb 암반에 굴착된 원형터널의 보강효과 해석을 위한 간편 수치해석법

  • 이연규 (군산대학교 해양시스템공학)
  • Published : 2008.04.30

Abstract

When a tunnel is excavated in a rock mass of poor condition, the adjacent zone of excavation surface may be reinforced by adopting the appropriate methods such as grouting and rock bolting. The reinforced effect can be evaluated by use of various numerical approaches, where the reinforcing elements may be expressed as distinct discretizations or smeared into the equivalent material properties. In this study, a simple numerical method, which can be classified as the latter approach, was developed for the elasto-plastic analysis of a circular tunnel. If a circular tunnel in a Mohr-Coulomb rock mass is reinforced to a finite thickness, the reinforced annulus may have different material properties from the in-situ rock mass. In the proposed elasto-plastic method for assessing the reinforcing effect, Lee & Pietruszczak (2007)'s method is applied to both the reinforced annulus and the outer insitu rock mass of the fictitious tunnel, and then two results are combined by enforcing the compatibility condition. The method were verified through comparing the results with the proposed method and the commercial finite difference code FLAC. When taking the variation of deformation modulus and strength parameters in the reinforced zone into account, the distributions of stress and radial displacement were much different from those obtained with the assumption of homogeneous rock mass.

암질이 불량한 암반에 터널이 굴착되는 경우 터널의 주변 암반은 그라우팅, 록볼트 설치 등의 보강법을 활용하여 일정 깊이까지 보강이 이루어진다. 터널보강의 효과를 수치해석적으로 계산하기 위해서는 보강재를 직접 요소로 표현하거나 보강영역의 등가물성을 활용하는 방법이 적용될 수 있다. 이 연구에서는 후자의 목적에 이용될 수 있는 원형터널의 탄소성 해석을 위한 간단한 수치해석 기법을 개발하였다. 정수압조건의 초기응력이 작용하는 Mohr-Coulomb 암반에 굴착된 원형터널이 고리형태로 일정 깊이까지 보강된다면 보강대는 원 암반과 물성의 차이를 보인다고 가정할 수 있다. 보강대와 보강대를 제외한 가상의 터널에 대해 각각 Lee & Pietruszczak (2007)가 제안한 탄소성 해석법을 적용하고 적합조건을 만족하도록 두 영역의 해석결과를 연결시키는 방법으로 보강대 효과를 계산할 수 있는 탄소성 수치해석법을 개발하였다. 상업코드인 FLAC을 활용한 해석결과와 비교를 통하여 개발된 방법의 정확성을 검증하였다. 해석결과 보강대의 변형계수와 강도정수의 변화를 고려한 응력 및 변위 분포는 균질한 암반을 가정한 해석결과와 큰 차이를 보여주었다.

Keywords

References

  1. 이연규, 2006, Mohr-Coulomb 암반에 굴착된 원형 터널의 변형률연화 거동해석, 터널과 지하공간(한국암반공학회지) 16(6), 495-505
  2. Alonso, E., Alejano, L.R., Varas, F., Fdez-Manin, G. and Carranza-Torres, C., 2003, Ground response curves for rock masses exhibiting strain-softening behavior. Int. J. Numer. Anal. Meth. Geomech. 27, 1153-1185 https://doi.org/10.1002/nag.315
  3. Bieniawski, Z.T., 1984, Rock mechanics design in mining and tunneling, Balkema
  4. Brady, B.H.G. and E.T. Brown, 2004, Rock mechanics for underground mining. Kluwer Academic Publishers
  5. Brown, E.T., Bray, J.W., Ladanyi, B., and Hoek, E., 1983, Ground response curves for rock tunnels. J. Geotech. Eng., ASCE 109, 15-39 https://doi.org/10.1061/(ASCE)0733-9410(1983)109:1(15)
  6. Carranza-Torres, C., 2004, Elasto-plastic solution of tunnel problems using the generalized form of the Hoek-Brown failure criterion. Int. J. Rock Mech. Min. Sci. 41, 480-481 https://doi.org/10.1016/j.ijrmms.2003.12.014
  7. Guan, Z., Jiang, Y., and Tanabasi, Y., 2007. Ground reaction analyses in conventional tunneling excavation. Tunnel. Underg. Space Technol. 22, 230-237 https://doi.org/10.1016/j.tust.2006.06.004
  8. Indraratna, B. and Kaiser, P.K., 1990, Design for grouted rock bolts based on the convergence control method. Int. J. Rock Mech. Min. Sci. 27, 269-281
  9. Itasca Consulting Group, Inc., 2005, FLAC 5.0 User's Guide
  10. Lang, T.A. and Bischoff, J.A., 1984, Stability of reinforced rock structures. Design and Performace of Underground Excavations, ISRM Symp.-Cambridge, U.K. 11-18
  11. Lee, Y.K. and Pietruszczak, S., 2007, A new numerical procedure for elastic-plastic analysis of a circular opening excavated in a strain-softening rock mass. Tunnel. Underg. Space Technol., doi:10.1016/j.tust.2007.11.002 (in Press)
  12. Park, K.-H. and Kim, Y.-J. 2006, Analytical solution for a circular opening in an elasto-brittle-plastic rock. Int. J. Rock Mech. Min. Sci. 43, 616-622 https://doi.org/10.1016/j.ijrmms.2005.11.004
  13. Peila, D. and Oreste, P.P., 1995, Axisymmetric analysis of ground reinforcing in tunnelling design. Computers and Geotechnics 17, 253-274 https://doi.org/10.1016/0266-352X(95)93871-F
  14. Sharan, S.K., 2003, Elasto-brittle-plastic analysis of circular opening in Hoek-Brown media. Int. J. Rock Mech. Min. Sci. 40, 817-824 https://doi.org/10.1016/S1365-1609(03)00040-6
  15. Sharma, K.G. and Pande, G.N., 1988, Stability of rock masses reinforced by passive, fully-grouted rock bolts. Int. J. Rock Mech. Min. Sci. 25, 273-285
  16. Van Dillen, D. Feller, R.W., and Dendrou, B, 1979, A two-dimentional finite element technique for modelling rock/structure interaction of a lined underground opening. 20th US Symp. on Rock Mech. 251-258
  17. Wang, Y., 1996. Ground response of circular tunnel in poorly consolidated rock. J. Geotech. Eng., ASCE 122, 703-708 https://doi.org/10.1061/(ASCE)0733-9410(1996)122:9(703)