DOI QR코드

DOI QR Code

고결된 하상모래의 압축강도 추정

Estimation of Compressive Strength for Cemented River Sand

  • 발행 : 2008.04.30

초록

본 연구에서는 시멘트의 고결효과를 정량적으로 파악하기 위하여 낙동강하상모래와 소량의 포틀랜드시멘트를 혼합하여 고결된 모래에 대하여 일축압축시험 및 배수조건과 비배수 조건의 삼축압축시험을 수행하였다. 시멘트혼합율의 증가에 따라 첨두강도 및 탄성계수는 증가하였고 시멘트의 결합력에 의하여 다일레이션 및 과잉간극수압이 억제되었으나 시멘트 결합력의 파괴 후 증가된 모래입자크기에 의하여 증가하였다. 그리고 배수조건의 응력-변형률 곡선은 연화거동이 나타났지만 비배수조건에서는 증가된 부(-)의 과잉간극수압에 의한 유효응력의 증가로 경화거동을 나타냈다. 각 조건에 대한 강도증가량의 예측을 위하여 선형을 가정한 다중회귀분석을 실시한 결과 제시된 경험식의 결정계수는 $0.81{\sim}0.91$로 나타나 신뢰성이 높은 것으로 평가되었으며 건조밀도의 경우 고결된 모래의 입도조건을 동시에 고려할 수 있어 고결된 모래의 강도를 결정하는데 중요한 변수로 분석되었다.

In this study, artificial cemented sand made of a few portland cement and Nak-Dong river sand was researched closely to investigate cementing effect quantitatively through unconfined tests and triaxial tests. The peak strength and elastic modulus increased and dilation of cemented sand was restricted by the cementation, but after breakage of the cementation, dilation and negative excess pore water pressure increased. In stress-strain curve, strain-softening behavior appeared in drained condition but strain-hardening behavior was appeared in undrained condition as a result of the increase of effective stress. The test was quantitatively analyzed by multiple regression models, correlating each response variable with input variable. The equations are valid only over the range investigated. Its adjusted coefficient of determination was $0.81{\sim}0.91$, and dry density is important factor for estimating strength of cemented sand.

키워드

참고문헌

  1. 김기영 (2006), 'CSG공법의 실내 배합설계', 한국지반공학회논문집, 제 22권 5호, pp.27-37
  2. 이우진, 이문주 (2006), '고결에 따른 모래의 비배수 전단거동 변화', 한국지반공학회논문집, 제 22권 4호, pp.85-94
  3. 한국수자원학회 (2002), 하천설계기준해설
  4. Airey, D. W. (1993), 'Triaxial Testing of Naturally Cemented Car bonate Soil', ASCE, Journal of Geotechnical Engineering Division, Vol.119, No.11, pp.1379-1398 https://doi.org/10.1061/(ASCE)0733-9410(1993)119:9(1379)
  5. Avramidis and Saxena, S. K. (1985), Behavior of cemented-stabilized sands under static and dynamic loads, Report No.IIT-CE85-01, Department of Civil Engineering, Illinois Institute of Technology, Chicago
  6. Black, D. K., Lee, K. L. (1973), 'Saturating laboratory samples by back pressure', J. Soil Mechanics & Foundation Division ASCE, Vol99, No.SM1, Paper9484, pp.75-93
  7. Clough, G. W., Iwabuchi, J., Rad, N. S., Kuppusamy, T. (1989), 'Influence of cementation on liquefaction of sands', ASCE, Vol.115, No.8, pp.1102-1117
  8. Gens, A., and Nova, R. (1993), Conceptual bases for a constitutive model for bonded soils and weak rocks. In Geotechnical engineering of hard soils-soft rocks, pp.485-494
  9. Huang, J. T., Airey, D. W. (1998), 'Properties of Artificially Cemented Carbonate Sand', ASCE, Journal of Geotechbical and Geoenvironmental Engineering, Vol.124, No.6, pp.482-499
  10. Ismail, M. A., Joer, H. A., Randolph, M. F., Meritt, A. (2002), 'Cementation of porous materials using calcite', Geotechnique, Vol.52, No.5, pp.313-324 https://doi.org/10.1680/geot.52.5.313.38709
  11. Ladd, R. S. (1978), 'Preparing Test Specimens Using Undercompaction', Geotechnical Testing Journal, Vol.1, No.1, pp.16-23 https://doi.org/10.1520/GTJ10364J
  12. Malandraki, V., Toll, D. G. (2000), 'Drained probing triaxial tests on a weakly bonded artificial soil', Geotechnique, London, 50(2), 141-151 https://doi.org/10.1680/geot.2000.50.2.141
  13. Mitchell (1986), Lectures notes on soil and site improvement, Department of Civil Engineering, University of California
  14. Sowers (1979), Introductory Soil Mechanics and Foundation, Geotechnical Engineering, 4th Edition, Macmillan Company, New York, N.Y