References
- Kety SS. Measurement of local blood flow by the exchange of an inert, diffusible substance. Methods Mes Res 1960;8:228-36
-
Iida H, Kanno I, Takahashi A, et al.. Measurement of absolute myocardial blood flow with
$H_2\;^{15}O$ and dynamic positron- emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation 1988;78:104-15 https://doi.org/10.1161/01.CIR.78.1.104 - Iida H, Law I, Pakkenberg B, et al. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: I. Theory, error analysis, and stereologic comparison. J Cereb Blood Flow Metab 2000;20:1237-51 https://doi.org/10.1097/00004647-200008000-00009
- Iida H, Kanno I, Miura S, et al. A determination of the regional brain/blood partition coefficient of water using dynamic positron emission tomography. J Cereb Blood Flow Metab 1989;9:874-85 https://doi.org/10.1038/jcbfm.1989.121
-
Iida H, Akutsu T, Endo K, et al. A multicenter validation of regional cerebral blood flow quantitation using [
$^{123}I$ ]iodoamphetamine and single photon emission computed tomography. J Cereb Blood Flow Metab 1996;16:781-93 https://doi.org/10.1097/00004647-199609000-00003 -
Takeuchi R, Matsuda H, Yonekura Y, et al. Noninvasive quantitative measurements of regional cerebral blood flow using technetium-99m- L,L-ECD SPECT activated with acetazolamide: quantification analysis by equal-volume-split
$^{99m}$ Tc-ECD consecutive SPECT method. J Cereb Blood Flow Metab 1997;17:1020-32 https://doi.org/10.1097/00004647-199710000-00003 -
Kim KM, Watabe H, Hayashi T, et al. Quantitative mapping of basal and vasareactive cerebral blood flow using split-dose
$^{123}I$ -iodoamphetamine and single photon emission computed tomography. Neuroimage. 2006;33:1126-35 https://doi.org/10.1016/j.neuroimage.2006.06.064 - Gjedde A, Diemer NH. Autoradiographic determination of regional brain glucose content. J Cereb Blood Flow Metab 1983;3:303-10 https://doi.org/10.1038/jcbfm.1983.45
- Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983; 3:1-7 https://doi.org/10.1038/jcbfm.1983.1
-
Logan J, Fowler JS, Volkow ND, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-
$^{11}C$ -methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990;10:740-7 https://doi.org/10.1038/jcbfm.1990.127 - Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 1996;16:834-40 https://doi.org/10.1097/00004647-199609000-00008
- Carson RE. PET parameter estimation using linear intergration methods: bias and variability consideration. In: quantification of brain function: tracer kinetics and image analysis in brain PET.: Amsterdam: Elsevier Science Publishers; 1993.p. 499-507
- Slifstein M, Laruelle M. Effects of statistical noise on graphic analysis of PET neuroreceptor studies. J Nucl Med 2000;41: 2083-8
- Logan J, Fowler JS, Volkow ND, Ding YS, Wang GJ, Alexoff DL. A strategy for removing the bias in the graphical analysis method. J Cereb Blood Flow Metab 2001;21:307-20 https://doi.org/10.1097/00004647-200103000-00014
- Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 1997;6: 279-87 https://doi.org/10.1006/nimg.1997.0303
- Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996;4:153-8 https://doi.org/10.1006/nimg.1996.0066
-
Cselenyi Z, Olsson H, Halldin C, Gulyas B, Farde L. A comparison of recent parametric neuroreceptor mapping approaches based on measurements with the high affinity PET radioligands [
$^{11}C$ ]FLB 457 and [11]WAY 100635. Neuroimage 2006;32:1690-708 https://doi.org/10.1016/j.neuroimage.2006.02.053 - Ichise M, Toyama H, Innis RB, Carson RE. Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab 2002;22:1271-81 https://doi.org/10.1097/01.WCB.0000038000.34930.4E
- Joshi A, Fessler JA, Koeppe RA. Improving PET receptor binding estimates from Logan plots using principal component analysis. J Cereb Blood Flow Metab 2008;28:852-65 https://doi.org/10.1038/sj.jcbfm.9600584
- Feng D, Sung-Cheng H, ZhiZhong W, Ho DAHD. An unbiased parametric imaging algorithm for nonuniformly sampled biomedical system parameter estimation. IEEE Transactions on Medical Imaging 1996;15:512-8 https://doi.org/10.1109/42.511754
- Varga J, Szabo Z. Modified regression model for the Logan plot. J Cereb Blood Flow Metab 2002;22:240-4 https://doi.org/10.1097/00004647-200202000-00012
- Faraway J. Linear Models with R: CRC Press; 2004. p.131-7
- Barber DC. The use of principal components in the quantitative analysis of gamma camera dynamic studies. Phys Med Biol 1980;25:283-92 https://doi.org/10.1088/0031-9155/25/2/008
- Pedersen F, Bergstrom M, Bengtsson E, Langstrom B. Principal component analysis of dynamic positron emission tomography images. Eur J Nucl Med 1994;21:1285-92 https://doi.org/10.1007/BF02426691
- Thireou T, Strauss LG, Dimitrakopoulou-Strauss A, Kontaxakis G, Pavlopoulos S, Santos A. Performance evaluation of principal component analysis in dynamic FDG-PET studies of recurrent colorectal cancer. Comput Med Imaging Graph 2003;27:43-51 https://doi.org/10.1016/S0895-6111(02)00050-2
-
Razifar P, Axelsson J, Schneider H, Langstrom B, Bengtsson E, Bergstrom M. A new application of pre-normalized principal component analysis for improvement of image quality and clinical diagnosis in human brain PET studies--clinical brain studies using [
$^{11}C$ ]-GR205171, [$^{11}C$ ]-L-deuterium-deprenyl, [$^{11}C$ ]-5-Hydroxy-L-Tryptophan, [$^{11}C$ ]-LDOPA and Pittsburgh Compound-B. Neuroimage 2006;33: 588-98 https://doi.org/10.1016/j.neuroimage.2006.05.060 - Kimura Y, Senda M, Alpert NM. Fast formation of statistically reliable FDG parametric images based on clustering and principal components. Phys Med Biol 2002;47: 455-68 https://doi.org/10.1088/0031-9155/47/3/307
- Millet P, Ibanez V, Delforge J, Pappata S, Guimon J. Wavelet analysis of dynamic PET data: application to the parametric imaging of benzodiazepine receptor concentration. Neuroimage 2000;11:458-72 https://doi.org/10.1006/nimg.2000.0563