초음속 비행체 모델의 연성기법을 이용한 구조 안전성 해석

도규성* • 소정수* • 강지훈** • 김형진** • 박대훈** • 오정수** • 문희장***

An analysis on the Structural Safety of Supersonic rocket Preliminary Model using Fluid-Structure Interaction

Gyu-Sung Do* · Jung-Soo So* · Ji-Hoon Kang** · Hyung-Jin Kim** · Dae-Hun Park** · Jeong-Su Oh** · Hee-Jang Moon***

ABSTRACT

The structural stability for preliminary model of supersonic rocket which has large L/D ratio is investigated. Large L/D ratio can cause a critical problem on the structural stability by the increase of bending-moment. By using the ANSYS and the CFX codes, we inspected the structural stability for Ma = 2 and angle of attack for 20° . The optimum number of bolts and their joints required on the rocket surface are predicted.

Key Words : Bending-moment, Margin of Safety(MS), Hybrid Rocket, Joint of Bolt, L/D ratio

	—— 기 ㅎ 석 명 ————
L/D	: 세장비
ρ	: 밀도
v	: 속도
p	: 압력
u_i , u_j	: 수평, 수직 속도 성분
u, v, w	: x, y, z축 속도 성분
MS	: 안전여유(Margin of safety)
SM	: 정안전성여유(Static stability margin)
P	: 전단력

M	:	굽힘 모멘트
N_{axial}	:	축방향 하중
$A_{s, nom}$:	볼트 유효 단면적
d_{in} , d_{out}	:	동체 내경, 외경
S	:	노즈콘 단면적
C_d	:	항력계수
τ,σ	:	전단응력, 인장응력
ALPHA	:	받음각(Angle of attack)

1. 서 론

* 학생회원, 한국항공대학교 항공우주 및 기계공학과

** 학생회원, 한국항공대학교 항공우주 및 기계공학부

*** 종신회원, 한국항공대학교 항공우주 및 기계공학부

연락저자, E-mail: hjmoon@kau.ac.kr

일반적인 초음속 비행체에 사용되는 재료의 선정기준은 경량성, 강도성, 소재공급의 용이 성, 가공성 등을 들 수 있다. 초음속으로 비행하는 비행체의 재료 선정에 중요하게 고려되어야 하는 문제는 성능 향상을 위해 비행체 구조의 중량을 감소시키면서도 로 켓 시스템의 안정성과 신뢰성을 극대화 시킬 수 있도록 하는 점이 있다.

이러한 재료선정 기준을 만족시키는 재료로는 알루미늄 합금이 쓰이고 있으며 인발 공정을 통 해 생산된 알루미늄 합금관은 고압, 저온의 액 체 산화제(N_2O)를 운용 할 수 있고, 가벼우며 경제적인 점 때문에 소형 사운딩 로켓의 산화제 탱크 및 동체에 적합하다. 그러나 알루미늄 인 발관은 현재 원자로용 압력관 등에 사용되어 전 략/기술 물자로 분류되며 수출입이 엄격히 제한 되고 있다[1]. 현재 국내에서 생산되는 알루미 늄 인발관의 최대 외경은 170㎜이므로 비행체의 최대 동체 외경은 170㎜로 설계하였다.

제한된 외경을 갖고 있는 동체에서 임무에 적합 한 페이로드와 부속품 탑재를 위해서는 일반적인 비행체의 세장(L/D)비[2] 보다 크게 설계되어야 한다.

큰 L/D비를 가지는 비행체는 굽힘 모멘트의 증 가로 인해 비행체의 결합부 및 최대모멘트 발생지 점에서 구조적으로 문제를 보다 심각하게 일으킬 수 있다. 이러한 문제점을 파악하기 위해 ANSYS와 CFX를 이용해서 비행 마하수가 2이고 받음각이 20 도일 때의 비행체 외부 유동장을 해석하였다. 비 행체로는 항공대학교에서 설계 중인 KHyRoc-I을 대상으로 하였다.해석 결과를 이용하여 볼트 결합 부에서의 적정 볼트 개수를 구하였고, 볼트 결합 부와 최대 굽힘 모멘트 발생지점에서 동체의 안전 여유(MS, Margin of Safety)를 계산하였다.

2. 볼트 결합부 및 해석

21 적정 볼트의 선정

기존 KS 규격의 볼트보다 큰 강도를 보장하는 UNBRAKO社의 고강도 볼트를 사용하였고 볼트 결 합부의 항력을 줄이고 동체 외부의 노출을 피하 기 위해 Fig. 1 과 같은 모양의 접시머리 볼트 로 채택하였다.

Fig. 1 Flat head bolt

동체의 두께는 접시머리 볼트 머리(t_d) 두께의 1.5배 이상이 확보되도록 설계해야 한다. 압력 관의 두께가 5mm일 때 이러한 조건을 만족하는 볼트는 Table 1에 있는 M5와 M6 볼트이다. 국내 에서 생산되는 알루미늄 압력관의 외경은 170mm 로 제한되어 있기 때문에 제한된 동체 외경에서 더 많은 볼트를 사용할 수 있는 M5로 채택하였 다.

Table 1. Standards of M5 and M6 bolts

	$t_d \ (mm)$	$egin{array}{c} A_{s,nom} \ (mm^2) \end{array}$	Load (N)	τ (MPa)
M5	2.8	14.2	14,910	630
M6	3.3	20.1	21,110	630

Table 1은 볼트 M5, M6에 해당하는 기본 물성 치를 나타낸 것이다[3].

22 외부 유동장 및 내부 구조 해석절차

비행체 외부 유동장 및 내부 구조에 대한 해석 은 ANSYS-CFX를 사용하였으며, 전체적인 절차를 Fig. 2에 나타내었다.

Fig. 2 Flow chart of the numerical model

CFX를 이용하여 외부 유동장 해석을 통해 비행 체에 가해지는 압력을 ANSYS에서 한번만 적용한 해석방법을 One-way 연성해석이라 하며, ANSYS 에서의 구조적 변화 고려하여 다시 CFX의 외부 유동을 해석하는 과정을 반복 해석한 방법을 Two-way 연성해석이라 한다. 따라서 구조물이 크게 변하거나 비정상상태의 경우, Two-way 연 성해석이 더 정확한 해석이 가능하다[4]. 선행 된 연구[5]에 따르면 KHyRoc-I예비모델에 대한 안전여유(MS)가 크지 않음을 확인할 수 있으며, 더 정확한 해석을 위해 Two- way 연성해석이 사 용되었다.

Fig. 3 Conservative interpolation

ANSYS-CFX 간의 정보교환은 Fig. 3와 같이 각 격자점에서의 변위와 온도가 전달되는 격자점 근방에서 면적가중을 사용한 보간법을 사용하여 정보가 교환된다[4].

23 비행체 외부 유동장 해석조건

Figure 4는 마하 2로 비행하는 비행체의 받음각 과 비행시간에 따른 정안정성여유를 나타내고 있다. 비행시간 10초에서 받음각이 20도보다 클 경우 비행 체의 정안정성이 보장되지 않음을 알 수 있다[5,6].

Fig. 4 Static stability margin(SM) on flight time and angle of attack(ALPHA)

따라서 정안정성이 확보되는 받음각 20도 이하 에서 안정적인 비행이 가능할 것으로 판단되며, 마하 2에서 받음각이 20도일 때 비행체의 구조 적 안정성에 대한 검증을 하였다.

Figure 5는 비행체 외부유동 해석을 위해 가 로, 세로, 높이 100m의 비정렬 격자를 생성한 것이다.

24 비행체 외부 유동장에서의 지배 방정식

비행체 외부 난류 유동의 해석을 위해 다음과 같은 보존 방정식을 사용하였으며, ANSYS-CFX를 이용한 Two-way 연성해석을 통해 반복 계산되었 다[4,7].

(1) 질량보존 방정식
$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \overrightarrow{V}\right) = 0 \tag{1}$$

(2) 운동량보존 방정식
$$\frac{\partial(\rho u_i)}{\partial t} + \frac{\partial}{\partial x_i}(\rho u_i u_j) + \frac{\partial p}{\partial x_j} = \frac{\partial \tau_{ij}}{\partial x_i} \quad (2)$$

(3) 에너지보존 방정식

$$\frac{\partial(\rho h_0)}{\partial t} + \nabla \cdot (\rho \overrightarrow{V} h_0) = \nabla \cdot (k_{eff} \nabla T) + \frac{\partial p}{\partial t} + \left[\frac{\partial(u\tau_{xx})}{\partial x} + \frac{\partial(u\tau_{yx})}{\partial y} + \frac{\partial(u\tau_{zx})}{\partial z} \right] + \left[\frac{\partial(v\tau_{xx})}{\partial x} + \frac{\partial(v\tau_{yx})}{\partial y} + \frac{\partial(v\tau_{zx})}{\partial z} \right]$$

$$+\left[\frac{\partial(w\tau_{xx})}{\partial x} + \frac{\partial(w\tau_{yx})}{\partial y} + \frac{\partial(w\tau_{zx})}{\partial z}\right]$$
(3)

(4) Standard k-ε 모델

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_j}(\rho u_j k) = \rho P - \rho \epsilon + \frac{\partial}{\partial x_j} \left[(\mu + \frac{\mu_t}{\sigma_k}) \frac{\partial k}{\partial x_j} \right]$$
(4)

$$\frac{\partial}{\partial t}(\rho\epsilon) + \frac{\partial}{\partial x_j}(\rho u_j\epsilon) = C_{\epsilon_1}\frac{\rho P\epsilon}{k} - C_{\epsilon_2}\frac{\rho\epsilon^2}{k} + \frac{\partial}{\partial x_j}\left[(\mu + \frac{\mu_t}{\sigma_\epsilon})\frac{\partial\epsilon}{\partial x_j}\right]\epsilon$$
(5)

3.2 비행체 외부 유동장 해석 결과

Figure 6-a와 b는 받음각이 20도일 때 CFX를 이용 비행체의 외부 유동장을 해석하여 동체에 미치는 압력을 나타낸 결과이다.

Fig. 6-a Pressure distribution (One-way)

Fig. 6-b Pressure distribution (Two-way)

Figure 6-a는 외부 유동장 해석결과를 내부 구 조에 한번만 적용한 One-way 연성해석을 사용한 결과이며 Fig. 6-b는 구조적 변화 고려하여 다 시 외부 유동장을 해석하는 과정을 반복 계산한 Two-way 연성해석의 결과이다.

Fig. 6-b와 같이 비행체에 작용하는 압력으로 인한 구조적 변화가 고려되어, 비행체의 굽힘 현상을 볼 수 있다.

3. 해석 및 결과 고찰

3.1 굽힘 모멘트와 축 방향 힘 간의 관련성

Two-way 연성해석을 통한 결과를 비행체 외피 에서 각 노드별 하중을 추출하여 비행체 굽힘방 향으로 정렬하여 Fig. 7과 같이 비행체 축방향 에 따른 하중으로 나타내었다.

Fig. 7 Loading diagram along the axial direction

Fig. 8 Bending-moment along the axial direction 축방향에 따른 하중으로 나타낸 Fig. 7을 비행 체의 공력중심에서 축방향으로 적분하여 Fig. 8 과 같이 굽힘 모멘트 선도로 변환할 수 있다.

Fig. 9 Relation of bending-moment and axial force

Figure 9와 같이 굽힘 모멘트와 인장력과의 관 계를 이용하여, 비행체에 작용하는 축방향에 따 른 하중을 볼트 결합부의 축방향 인장력으로 변 환하였다.

굽힘 모멘트와 축방향의 힘의 관계를 이용해 하나의 볼트에 작용하는 전단력은 Eq. 9와 같이 표현된다[8].

$$P_{bolt} = \frac{4M - N_{axial} d_{in}}{n_{bolt} d_{in}} \tag{9}$$

또한 볼트에 작용하는 전단력을 구하기 위해 서는 축방향으로 작용하는 하중(N_{axial})을 고려 해야 한다. 이는 노즈콘에서 발생하는 축 방향 항력과 가속도에 의해 동체에 발생하는 축 방향 하중의 합력이며, Eq. 10과 Eq. 11로 이루어진 다.

$$F_D = \frac{1}{2}\rho C_D S V^2 \tag{10}$$

가속도에 의해 동체에 발생하는 축방향 하중
 N_i = m_i {a + g cos (90° - FPA)} (11)

Table 2. Acceleration, velocity and FPA in 10 sec

Acceleration (m/s ²)	69.83
Velocity (m/s)	591.36
Flight Path Angle(FPA)	81.97°

Table 3. Mass and axial loads of each station

	Mass, m_i	Load, N_i
	(kg)	(N)
STA 540	2.5	1323
STA 740	4.8	1705
STA 1640	19.9	3291
STA 3920	36.7	9122

Equation 10과 11에 사용되는 데이터는 Table 2와 Table 3과 같다[5,6].

3.2 Station별 안전여유 및 적정 볼트 수 계산

Figure 10은 각 Station별 위치를 표시하였으 며, 각 Station별로 하나의 볼트에 작용하는 전 단응력은 Eq. 12를 이용하여 계산하였다.

$$\tau_{bolt} = \frac{P_{bolt}}{A_{s,nom}} \tag{12}$$

0.6이상의 안전여유(MS)를 만족시키는 볼트 수와 하나의 볼트에 작용하는 전단력, 전단응 력, 안전여유(MS)를 Table 4에 정리하였다. 볼 트 수는 한 열당 최소 8개 이상이며 8개 이상 의 필요수량을 보이는 STA 1640과 STA 3920의 경우는 여러 열로 설계할 예정이다[8,9,10].

Table 4. Number of bolts and margin of safety of each station

	No.of	$\overline{P_{bolt}}$	$ au_{bolt}$	MS	
	Bolts	(N)	(Mpa)		
STA 540	8	1,308	92.1	4.95	
STA 740	8	2,617	184	1.97	
STA 1640	18	4,755	334.9	0.64	
STA 3920	42	4811	338.8	0.62	

Fig. 10 Geometry of KHyRoc-I preliminary model

3.3 동체 취약부 안전여유 계산

동체에서 구조적 문제가 발생할 것으로 예상 되는 부분은 볼트 탭으로 인하여 면적이 줄어든 볼트 결합부분(STA 3920)과 최대모멘트 발생지 점(STA 3300)이다.

이 지점에서 Al 6063-T6 소재의 동체부분과 Al 6061-T6 소재의 동체 결합부용 파이프로 나 누어 각각의 안전여유(MS)를 계산하였다.

(1) 볼트 결합부 (STA 3920)

비행체의 동체에서 인장력과 압축력을 받지 않는 중심부분(동체외경의 70%)은 무시하고 동 체의 상·하 부분만이 인장력과 압축력을 받는다 고 가정한다면, 동체상단에 작용하는 인장력은 Eq. 13과 같이 표현할 수 있다.

$$\sigma = \frac{P}{A} \tag{13}$$

인장력은 Eq. 14와 같이 동체 외경의 90%에 해당되는 지점에서 작용한다[8].

$$P = M \times 0.9 \, d_{out} \tag{14}$$

볼트의 탭 부분을 제외한 인장력이 작용하는 면적은 전체면적의 약 1/4이고 Eq. 15와 같이 표현할 수 있다[8].

$$A = \left\{ \frac{\pi}{4} \left(d_{out}^2 - d_{in}^2 \right) - n_{bolt} d_{bolt} \frac{d_{out} - d_{in}}{2} \right\} \frac{90°}{360°} (15)$$

동체에 작용하는 힘과 인장력, Al합금항복응 력[11], 동체에서의 안전여유(MS)를 Table 5에 나타내었다.

Table 5. Margin of safety in joint of bolt

	P(N)	σ (Mpa)	σ_{yield} (Mpa)	MS
Al 6063-T6	46,649	78.80	215	1.72
Al 6061-T6	49,564	54.55	225	3.12

(2) 최대 굽힘 모멘트 발생지점 (STA 3300)

Figure 8의 비행체 축방향 굽힘 모멘트 선도 에서 최대 굽힘 모멘트는 STA 3300에서 발생하 며, 굽힘 모멘트가 작용하는 동체의 인장력을 Eq. 16을 사용하여 계산하였다.

$$\sigma = \frac{My}{I} \tag{16}$$

동체의 안전여유(MS)는 Table 6에 나타내었으 며 동체의 외피에 해당되는 Al 6063-T6에서 안 전여유(MS)가 0.39임을 확인할 수 있으며, STA 3300에서 동체 구조강도의 여유가 가장 적음을 확인할 수 있다.

Table 6. Margin of safety on STA3300

	M (Nm)	σ (Mpa)	σ_{yield} (Mpa)	MS
Al 6063-T6	13,995	154.5	215	0.39
Al 6061-T6			225	0.46

3.4 연성해석 해석 결과

전술한 계산 결과를 검증하기 위해 ANSYS-CFX 의 Two-way기법을 사용한 연성해석을 사용하였 다. 해석 결과 중에서 MS<0.6영역을 Fig. 11에 표현하였으며, 축방향에 따른 안전여유(MS)를 각 노드별로 추출하여 Fig. 12로 나타내었다.

Figure 11에서 동체 가운데 부분과 핀 부분이 구조적으로 취약함을 알 수 있으며, 설계변경과 구조적인 보강이 필요 있음을 알 수 있다.

STA3300에서 안전여유(MS)가 0.35임을 확인할 수 있었으며, MS<0.6 이하인 STA3000부터 STA3550까지의 구간에서 구조적 안정성이 보장 되지 않음을 알 수 있다. 또한 Eq. 16에 의한 결과(Table. 6)와 비교하면, 약 10%의 오차를 보이는 것을 알 수 있으며, 이는 Eq. 6의 계산 에서 핀에 작용하는 힘을 굽힘 모멘트선도에서 제외함에 따라 발생한 것으로 판단된다.

Fig. 12 MS graph along the axial direction

제한된 외경으로 인해 큰 L/D비를 갖도록 설계 된 비행체의 구조적 안전성을 검증하기 위해 ANSYS-CFX를 이용해 비행속도 마하 2일 때 받음 각 20도에서 비행체의 외부 유동장을 해석하여 적정 볼트 개수 및 동체의 안전여유(MS)를 계산 하였으며, 다음과 같은 결론을 얻을 수 있었다.

 MS>0.6을 만족하는 적정 볼트 개수는 STA540~ 3920에서 8~42개이며, 향후 L/D비, 중 량, 항력, 속도, 가속도 등의 설계변수 변화에 따른 적정 볼트 개수를 설계할 수 있다.

 제한된 외경을 갖는 동체의 가장 취약부인 STA 3300에서 0.35이므로 MS>0.6을 만족하지 못 하므로 본 예비 설계에서 구조적 결함이 예측된
 다. 구조적 취약성 보완하기 위해서는 회수부를 줄이거나, 동체의 직경을 늘려서 L/D비를 줄이 는 것이 필요하다.

후 기

'본 논문은 2008년도 정부(교육과학기술부)의 재 원으로 한국과학재단의 국가지정연구실사업으로 수 행된 연구임(No. ROA-2007-000-10034-0(2007)).'

참 고 문 헌

- [1] "전략물자·기술 수출입 통합고시", 2008
- [2] Sutton, "Rocket Propulsion Elements, 6th ed", G. P. John Wiley & Sons Inc., 1992
- [3] "A comprehensive catalog of UNBRAKO soket screws and reated products", UNBRAKO GROUP, 1996
- [4] "Release 11.0 Documentation for ANSYS", ANSYS, Inc, 2007
- [5] 도규성, 허준영, 김수종, 김진곤, 문희장, 성홍계, "하이브리드 로켓(KHyRoc-I) 예비모 델의 구조 안전성 연구", 추진공학회, 2008
 춘계 학술대회, 2008
- [6] 허준영, 조민경, 김종찬, 김수종, 문희장. 성홍계, "N20 액체 산화제를 사용한 고도 15Km급 하이브리드 로켓 설계", 추진공학회, 2008 춘계 학술대회, 2008
- [7] 박정선, 아이티씨, "(ANSYS를 이용한) 유한 요소해석", 2008
- [8] 권진희, 김인걸, 박정선, 박훈철, 우경식, 조맹효, "항공기 구조설계", 경문사, 2004
- [9] Micharl Chun-Yung Niu "Airframe Stress Analysis and Sizing 2nd ed", Hong Kong Conmilit Press LTD, 1997
- [10] 김항욱, "항공기체구조론", 한국항공대학 교 출판부, 1995
- [11] "ASM Metals Handbook Volume 02", The Materials Information Company, 1992