고분자 재료의 형광 크랙센서

Fluorescent Crack Sensor in a Polymeric Material

  • 조성열 (연세대학교 과학기술대학 화학및의화학과) ;
  • 김지은 (연세대학교 과학기술대학 화학및의화학과) ;
  • 김중곤 (한화석유화학중앙연구소 바이오연구센터) ;
  • 정찬문 (연세대학교 과학기술대학 화학및의화학과)
  • Cho, Sung-Youl (Department of Chemistry and Medical Chemistry, Yonsei University) ;
  • Kim, Ji-Eun (Department of Chemistry and Medical Chemistry, Yonsei University) ;
  • Kim, Joong-Gon (Biotechnology Division, Hanwha Chemical R&D Center) ;
  • Chung, Chan-Moon (Department of Chemistry and Medical Chemistry, Yonsei University)
  • 발행 : 2008.03.31

초록

Styrylpyrylium salt 화합물(DHSP)을 합성하고 광이량화시켜 cyclobutane형 이량체(DHSP dimer)를 합성하였다. 여기에 메타크릴레이트기를 도입하여 DMSP dimer를 합성하였다. DMSP dimer 광가교물의 FT-IR 분석 결과, 크랙 생성에 의해 cyclobutane환이 개열되어 styryl C=C 구조로 되돌아가는 것으로 판단되었다. 385 nm의 빛에 의하여 DHSP는 626 nm의 형광을 방출하는 반면 DHSP dimer는 매우 약한 형광만을 나타내었다. DMSP dimer의 광가교 필름에 microcrack을 생성시키고 $330{\sim}385\;nm$의 빛을 조사한 결과, 크랙 부분에서의 형광 방출이 확인되었다.

A styrylpyrylium salt (DHSP) was synthesized and then photodimerized to obtain a cyclobutane-type dimer (DHSP dimer). Methacryloyl group was incorporated into DHSP dimer to obtain DMSP dimer. Based on FT-IR analysis of a crosslinked DMSP dimer, it was considered that the cyclobutane structure reversed to styryl C=C bonds upon crack formation. Fluorescence measurement of DHSP in solid state (excitation at 385 nm) showed emission centered at 626 nm, while DHSP dimer revealed very weak emission. Fluorescent emission from microcracks in a film of crosslinked DMSP dimer was observed upon exposure to $330{\sim}385\;nm$ light.

키워드

참고문헌

  1. J. A. Sauer and M. Hara, Adv. Polym. Sci., 91/92, 69 (1990) https://doi.org/10.1007/BFb0018019
  2. C. Dry, Composite Struct., 35, 263 (1996) https://doi.org/10.1016/0263-8223(96)00033-5
  3. Y. Zhang, Proc. SPIE-Inter. Soc. Opt. Eng., 5765, 1095 (2005)
  4. R. Ali, D. R. Mahapatra, and Gopalakrishnan, Smart Mater. Struct., 14, 376 (2005) https://doi.org/10.1088/0964-1726/14/2/012
  5. S. Rattanachan, Y. Miyashita, and Y. Mutoh, Sci. Technol. Adv. Mater., 6, 704 (2005) https://doi.org/10.1016/j.stam.2005.06.002
  6. S.-G. Shin, H.-J. Lim, and J.-H. Lee, Han'guk Chaelyo Hakhoechi, 13, 732 (2003)
  7. W. Kazuhiro, N. Hiroaki, and G. Nishino, JP2005172809 (2005)
  8. B. Zhang, B. Benmokrane, J.-F. Nicole, and R. Masmoudi, Mater. Struct., 35, 357 (2002) https://doi.org/10.1617/13778
  9. Y. Zhao and F. Ansari, Sens. Actutator A-Phys., A100, 247 (2002)
  10. A. Singhvi and A. Mirmiran, J. Reinf. Plast. Compos., 21, 351 (2002) https://doi.org/10.1177/0731684402021004254
  11. I. B. Kwon, C. G. Kim, and C. S. Hong, Compos. Sci. Technol., 57, 1639 (1997) https://doi.org/10.1016/S0266-3538(97)00101-2
  12. H. Tsuda, T. Ikeguchi, J. Takahashi, and K. Kemmochi, J. Mater. Sci. Lett., 17, 503 (1998) https://doi.org/10.1023/A:1006592730366
  13. E. R. Generazio, Adv. Cer. Matrix Composites, 169 (1996)
  14. K. Novak, V. Enkelmann, G. Wegner, and K. B. Wagener, Angew. Chem. Int. Ed. Engl., 32, 1614 (1993) https://doi.org/10.1002/anie.199316141
  15. J.-G. Kim and C.-M. Chung, Biomaterials, 24, 3845 (2003) https://doi.org/10.1016/S0142-9612(03)00242-4
  16. G.-J. Sun, Y.-J. Park, and K.-H. Chae, Polymer(Korea), 23, 113 (1999)
  17. C.-M. Chung, Y.-S. Roh, S.-Y. Cho, and J.-G. Kim, Chem. Mater., 16, 3982 (2004) https://doi.org/10.1021/cm049394+
  18. M. B. Smith and J. March, March's Advanced Organic Chemistry, Reactions, Mechanisms, and Structures, John Wiley and Sons, New York, p. 24 (2001)
  19. D. Cremer and J. Gauss, J. Am. Chem. Soc., 108, 7567 (1986) https://doi.org/10.1021/ja00284a021
  20. X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, and F. Wudl, Science, 295, 1698 (2002) https://doi.org/10.1126/science.1065879