Kinetic Studies on Homopolymerization of $\alpha$-Methylstyrene and Sequential Block Copolymerization of Isobutylene with $\alpha$-Methylstyrene by Living/Controlled Cationic Polymerization

리빙/조절 양이온중합에 의한 알파메틸스티렌 호모중합 및 이소부틸렌과의 블록공중합에 대한 반응속도론 연구

  • Wu, Yibo (College of Material Science and Engineering, Beijing University of Chemical Technology) ;
  • Guo, Wenli (Department of Material Science and Engineering, Beijing Institute of Petrochemical Technology) ;
  • Li, Shuxin (Department of Material Science and Engineering, Beijing Institute of Petrochemical Technology) ;
  • Gong, Huiqing (College of Material Science and Engineering, Beijing University of Chemical Technology)
  • Published : 2008.07.31

Abstract

The controlled/living cationic polymerization of $\alpha$-methylstyrene (${\alpha}MeSt$) and sequential block copolymerization of isobutylene (IB) with ${\alpha}MeSt$ were achieved using 2-chloro-2,4,4-trimethylpentane (TMPCl)/titanium tetrachloride ($TiCl_4$)/titanium isopropoxide ($Ti(OiPr)_4$)/2,6-ditert-butylpyridine (DtBP) initiating system in $CH_3Cl$/hexane(50/50 v/v) solvent mixture at $-80^{\circ}C$. The polymerization rate decreased with increasing $[Ti(OiPr)_4]/[TiCl_4]$ ratio in the homopolymerization of ${\alpha}MeSt$. The effects of $[Ti(OiPr)_4]/[TiCl_4]$ ratios and $PIB^+$ molecular weight on the polymerization rate and blocking efficiency were also investigated. Well-defined poly(isobutylene-b-$\alpha$-methylstyrene)s were demonstrated by $^1H$-NMR and triple detection SEC; refractive index (RI), multiangle laser light scattering (MALLS) and ultraviolet (UV) detectors. Blocking efficiencies for the poly(isobutylene-b-$\alpha$-methylstyrene)s of almost 100% were obtained when ${\alpha}MeSt$ was induced by PIB's of $M_n\;{\geq}\;41000$ at $[Ti(OiPr)_4]/[TiCl_4]=1$. Differential scanning calorimetry (DSC) of the block copolymers showed two glass transition temperatures, thereby demonstrating microphase separation.

Keywords

References

  1. Y. Kwon and R. Faust, J. Macromol. Sci., Pure Appl. Chem., A42, 385 (2005)
  2. Z. Fodor and R. Faust, J. Macromol. Sci., Pure Appl. Chem., A35, 375 (1998)
  3. Y. Kwon, X. Y. Cao, and R. Faust, Macromolecules, 32, 6963 (1999) https://doi.org/10.1021/ma990333k
  4. X. Xu, Y. X. Wu, Y. X. Qiu, C. L. Dong, and G.Y. Wu, Eur. Polym. J., 42, 2791 (2006) https://doi.org/10.1016/j.eurpolymj.2006.06.028
  5. J. E. Puskas, S. Sohel, Z. Y. Kevin, B. Kim, and K. Gabor, Eur. Polym. J., 41, 1 (2005) https://doi.org/10.1016/j.eurpolymj.2004.08.006
  6. Y. Kwon and J. E. Puskas, Eur. Polym. J., 40, 119 (2004) https://doi.org/10.1016/S0014-3057(03)00167-8
  7. J. E. Puskas, Y. Chen, and M. Tomkins, Eur. Polym. J., 39, 2147 (2003) https://doi.org/10.1016/S0014-3057(03)00149-6
  8. Y. H. Zhou, R. Faust, S. J. Chen, and P. G. Samuel, Macromolecules, 37, 6716 (2004) https://doi.org/10.1021/ma049424u
  9. B. Hassen, S. Abhijit, S. Laszlo, and R. Faust, J. Macromol. Sci., Pure Appl. Chem., A44, 359 (2007)
  10. S. Hadjikyriacou and R. Faust, Macromolecules, 28, 7893 (1995) https://doi.org/10.1021/ma00127a041
  11. Z. Fodor and R. Faust, J. Macromol. Sci.; Pure Appl. Chem., A32, 575 (1995)
  12. L. Sipos, A. Som, and R. Faust, Biomacromolecules, 6, 2570 (2005) https://doi.org/10.1021/bm050299j
  13. Y. Zhou and R. Faust, Macromolecules, 38, 8183 (2005) https://doi.org/10.1021/ma0508449
  14. D. W. Li and R. Faust, Macromolecules, 28, 1383 (1995) https://doi.org/10.1021/ma00109a009
  15. L. Sipos, X. Y. Cao, and R. Faust, Macromolecules, 34, 456 (2001) https://doi.org/10.1021/ma001474l
  16. P. De, L. Sipos, R. Faust, M. Moreau, B. Charleux, and J. P. Vairon, Macromolecules, 38, 41 (2005) https://doi.org/10.1021/ma048390n