Synthesis, Characterization, and Thermal Degradation of Oligo-2-[(pyridin-4-yl-)methyleneamino]pyridine-3-ol and Oligomer-Metal Complexes

올리고피리디닐메틸렌아미노피리딘올과 금속 착화물의 합성, 분석 및 열분해 특성 연구

  • Kaya, Ismet (Canakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Chemistry) ;
  • Gul, Murat (Canakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Chemistry)
  • Published : 2008.07.31

Abstract

This study examined the oxidative polycondensation reaction of 2-[(pyridin-4-yl-) methyleneamino] pyridine-3-ol (2-PMAP) using air $O_2$ and NaOCl oxidants at various temperatures and times in aqueous alkaline and acidic media. Under these reactions, the optimum reaction conditions using air $O_2$ and NaOCl oxidants were determined for 2-PMAP. The number-average molecular weight ($M_n$), weight average molecular weight ($M_w$), and polydispersity index (PDI) values of O-2-PMAP synthesized in aqueous alkaline media were found to be 960, 1230, and $1.281\;g\;mol^{-1}$ using NaOCl, and 1030, 1520, and $1.476\;g\;mol^{-1}$ using air $O_2$, respectively. At the optimum reaction conditions, the yield of O-2-PMAP in aqueous alkaline media was 92.50% and 85.70% for air $O_2$ and NaOCl oxidants, respectively. The yield of O-2-PMAP in aqueous acidic media was 88.5% and 88.0% for NaOCl and air $O_2$ oxidants, respectively. O-2-PMAP was characterized by $^1H-$, $^{13}C$-NMR, FT-IR, UV-vis, SEC, and elemental analysis. TGA-DTA analysis revealed O-2-PMAP and its oligomer metal complex compounds, such as $Co^{+2}$, $Ni^{+2}$, and $Cu^{+2}$, to be stable against thermal decomposition and their weight losses at $1000^{\circ}C$ were found to be 73.0, 58.0, 53.5%, and 50.0%, respectively. In addition, the antimicrobial activities of the monomer and oligomer were tested against E. Coli (ATCC 25922), E. Faecelis (ATCC 29212), P. Auroginasa (ATCC 27853), and S. Aureus (ATCC 25923).

Keywords

References

  1. E. F. V. Scriven, Chem. Soc. Rev., 12, 129 (1983) https://doi.org/10.1039/cs9831200129
  2. A. V. Ragimov, B. A. Mamedov, and S. G. Gasanova, Polym. Int., 43, 343 (1997) https://doi.org/10.1002/(SICI)1097-0126(199708)43:4<343::AID-PI749>3.0.CO;2-3
  3. B. A. Bolto, J. Macromol. Sci. Chem., A14, 107 (1980)
  4. U. Casellato, P. A. Vigato, and M. Vidali, Coordinat. Chem. Reviews, 23, 31 (1977)
  5. S. Kobayashi and H. Higashimura, Progress in Polymer Science, 28, 1015 (2003) https://doi.org/10.1016/S0079-6700(03)00014-5
  6. U. S. Yousef, Eur. Polym. J., 36, 1629 (2000) https://doi.org/10.1016/S0014-3057(99)00231-1
  7. I. Kaya, A. R. Vilayetoglu, and H. Topak, J. Appl. Polym. Sci., 85, 2004 (2002) https://doi.org/10.1002/app.10815
  8. M. N. Patel and S. H. Patıl, J. Macromol. Sci. Chem., A16, 1429 (1981)
  9. I. Kaya, A. R. Vilayetoglu, and H. Mart, Polymer, 42, 4859 (2001) https://doi.org/10.1016/S0032-3861(00)00883-1
  10. İ. Kaya and S. Koça, Polymer, 45, 1743 (2004) https://doi.org/10.1016/j.polymer.2004.01.035
  11. I. Kaya and S. Koyuncu, Polymer, 44, 7299 (2003) https://doi.org/10.1016/j.polymer.2003.09.011
  12. I. Kaya, H. O. Demir, and A. R. Vilayetoglu, Synthetic Metals, 126, 183 (2002) https://doi.org/10.1016/S0379-6779(01)00501-X
  13. I. Kaya and D. Senol, J. Appl. Polym. Sci., 90, 442 (2003) https://doi.org/10.1002/app.12674
  14. O. Catanescu, M. Grigoras, G. Colotin, A. Dobreanu, N. Hurduc, and C. I. Simionescu, Eur. Polym. J., 37, 2213 (2001) https://doi.org/10.1016/S0014-3057(01)00119-7
  15. I. Kaya and A. Bilici, J. Appl. Polym. Sci., 104, 3417 (2007) https://doi.org/10.1002/app.26122
  16. I. Kaya and A. Bilici, J. Appl. Polym. Sci., 102, 3795 (2006) https://doi.org/10.1002/app.24756
  17. M. Cazacu, M. Marcu, A. Vlad, G. I. Rusu, and M. Avadanei, Journal of Organometallic Chemistry, 689, 3005 (2004) https://doi.org/10.1016/j.jorganchem.2004.05.051