Surface Modification of Polymeric Material Using Atmospheric Plasma

대기압 플라즈마를 이용한 고분자 소재의 표면개질

  • Sim, Dong-Hyun (Department of Chemical Engineering, Dong-A University) ;
  • Seul, Soo-Duk (Department of Chemical Engineering, Dong-A University)
  • 심동현 (동아대학교 공과대학 화학공학과) ;
  • 설수덕 (동아대학교 공과대학 화학공학과)
  • Published : 2008.09.30

Abstract

An atmospheric plasma pre-treatment method was applied to polyurethane foam (density: 0.27) and rubber (butadiene rubber) to improve its contact angle and adhesion using atmospheric plate type reactor. In order to investigate the optimum reaction condition of plasma treatment, type of treatment gas (nitrogen, argon, oxygen, air), rate of gas flow ($30{\sim}100\;mL/min$), and treated time ($0{\sim}30\;s$) were examined in a plate plasma reactor. The result of the surface modification with respect to the treatment procedure was characterized by using SEM and ATR-FTIR. Due to a decrease of the contact angle of various materials, the greatest adhesion strength was achieved at optimum condition such as flow rate of 100 mL/min, reaction time of polyurethane foam 10 s and rubber 3 s for an atmosphere nitrogen gas. Consequently, the atmospheric plasma treatment reduced the wettability of the polyurethane foam and rubber also resulted in the improvement of the adhesion.

고분자 소재에 평판형 플라즈마 전처리 방식을 적용시켜 polyurethane foam(density : 0.27)과 rubber (butadiene rubber) 소재 표면의 접촉각 및 접착력을 향상시켰다. 플라즈마 반응기의 최적의 반응조건을 조사하기 위해서 전처리기류(질소, 아르곤, 산소, 공기), 기류의 유량($30{\sim}100\;mL/min$), 그리고 전처리 시간($0{\sim}30\;s$) 등을 변화시켜 전처리하고 polyurethane foam의 경우 진공식 플라즈마처리 방식과 상호 비교하였다. 분위기 기류인 $N_2$의 유량을 100 mL/min로 설정 후 polyurethane foam은 10 s, rubber는 3 s 동안 전처리 했을 때 가장 높은 접착박리강도를 나타내었다. 전처리 후 소재의 표면 변화는 SEM과 ATR-FTIR을 이용하여 측정하였다. 결과적으로 평판형 플라즈마 조작 방식에 의한 처리로 소재 표면의 젖음성과 접착박리강도가 개선되었음을 확인하였다.

Keywords

References

  1. J. M. Grace and L. J. Gerenser, J. Disper. Sci. Technol., 24, 305 (2003) https://doi.org/10.1081/DIS-120021793
  2. R. Seebock, H. Esrom, M. Charbonnier, and M. Romand, Plasmas and Polymers, 5, 103 (2000) https://doi.org/10.1023/A:1009587916382
  3. N. Y. Cui and N. M. D Broun, Appl. Surf. Sci., 189, 31 (2002) https://doi.org/10.1016/S0169-4332(01)01035-2
  4. N. V. Bhat, D. J. Upadhyay, R. R. Deshmukh, and S. K. Gupta, J. Phys. Chem. B, 107, 4550 (2003) https://doi.org/10.1021/jp021729s
  5. C. Y. Hung and C. L. Chen, Surf. Coat. Technol., 153, 194 (2002) https://doi.org/10.1016/S0257-8972(01)01675-9
  6. Y. H. Yeom, S. W. Myung, and H. S. Choi, Korean Chem. Eng. Res., 42, 89 (2004)
  7. R. V. Dabhade, D. S. Bodas, and S. A. Gangal, Sens. B-Chemical, 98, 37 (2004) https://doi.org/10.1016/j.snb.2003.08.020
  8. K. Tanaka, T. Inomata, and M. Kongoma, Thin Solid Films, 386, 217 (2001) https://doi.org/10.1016/S0040-6090(00)01653-9
  9. J. K. Kim and D. G. Lee, J. Adhesion Sci. Technol., 17, 1017 (2003) https://doi.org/10.1163/156856103322112905
  10. M. R. Werthimer and R. Bartnikas, Plasma Processing of Polymers, 14, 435 (1997)
  11. C. W. Joo, Y. Y. Choi, J. K. Suh, and E. J. Son, J. Korean Fiber Soc., 28, 473(1991)
  12. D. Ferrante, S. Iannace, and T. Monetta, J. Mater. Sci., 34, 175 (1999) https://doi.org/10.1023/A:1004467002761
  13. K. Wong, X. Tao, C. Yuen, and K, Yeung, Textile Res. J., 69, 845 (1999)
  14. B. Beake, J. Ling, and G. Leggett, J. Mater. Chem., 8, 1735 (1998) https://doi.org/10.1039/a801194j
  15. P. G. Kim, J. H. Jang, J. M. Park, and B. S. Hwang, J. Adhesion and Interface, 8, 9 (2007)
  16. S. H. Ha, Y. J. Jang, and S. D. Seul, J. Adhesion and Interface, 6, 8 (2005)