Dynamic Mechanical Properties of Natural Fiber/Polymer Biocomposites: The Effect of Fiber Treatment with Electron Beam

  • Han, Young-Hee (Nano Materials Research Center, Korea Institute of Energy Research) ;
  • Han, Seong-Ok (Nano Materials Research Center, Korea Institute of Energy Research) ;
  • Cho, Dong-Hwan (Polymer/Bio-Composites Research Laboratory, Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kim, Hyung-Il (Department of Industrial Chemistry, Chungnam National University)
  • 발행 : 2008.04.30

초록

Environmentally friendly biocomposites were made using plant-based natural fibers, such as henequen and kenaf. The natural fiber reinforced polypropylene (PP) and unsaturated polyester (UP) biocomposites were examined in terms of the reinforcing effect of natural fibers on thermoplastic and thermosetting polymers. Kenaf (KE) and henequen (HQ) fibers were treated with an electron beam (EB) of 10 and 200 kGy doses, respectively, or with a 5 wt% NaOH solution. Four types of biocomposites (KE/PP, HQ/PP, KE/UP and HQ/UP) were fabricated by compression molding and each biocomposite was characterized by dynamic mechanical analysis and thermogravimetric analysis. The kenaf fiber had the larger reinforcing effect on the dynamic mechanical properties of both PP and UP biocomposites than the henequen fiber. The highest storage modulus was obtained from the biocomposite with the combination of UP matrix and 200 kGy EB treated kenaf fibers.

키워드

참고문헌

  1. R.G. Raj, B.V. Kokta, D. Maldas, and C. Daneault, J. Appl. Polym. Sci., 37, 1089 (1989) https://doi.org/10.1002/app.1989.070370420
  2. A. K. Bledzki and J. Gassan, Prog. Polym. Sci., 24, 221 (1999) https://doi.org/10.1016/S0079-6700(98)00018-5
  3. C. P. L. Chow, X. S. Xing, and R. K. Y. Li, Comp. Sci. Tech., 67, 306 (2007) https://doi.org/10.1016/j.compscitech.2006.08.005
  4. Y. M. Lim, Y. M. Lee, and Y. C. Nho, Macromol. Res., 13, 327 (2005) https://doi.org/10.1007/BF03218461
  5. S. D. Oh, S. S. Byun, S. H. Lee, and S. H. Choi, Macromol. Res., 14, 194 (2006) https://doi.org/10.1007/BF03218508
  6. H. Dorschner, U. Lappan, and K. Lunkwitz, Nucl. Instrum. Meth. B, 139, 495 (1998) https://doi.org/10.1016/S0168-583X(97)00937-3
  7. S. O. Han and M. H. Han, ACS Polym. Mater. Sci. Eng., 89, 590 (2003)
  8. Y. H. Han, S. O. Han, D. Cho, and H. I. Kim, Comp. Interface, 14, 559 (2007) https://doi.org/10.1163/156855407781291272
  9. Y. H. Han, S. O. Han, D. Cho, and H. I. Kim, Macromol. Symp., 245-246, 539 (2006)
  10. J. Gassan and A. K. Bledzki, Compos. Sci. Tech., 59, 1303 (1999) https://doi.org/10.1016/S0266-3538(98)00169-9
  11. M. Sreekala, M. Kumaran, and S. Thomas, J. Appl. Polym. Sci., 66, 821 (1997) https://doi.org/10.1002/(SICI)1097-4628(19971031)66:5<821::AID-APP2>3.0.CO;2-X
  12. A. K. Mohanty, M. A. Khan, and G. Hinrichsen, J. Mater. Sci., 35, 2589 (2000) https://doi.org/10.1023/A:1004723330799
  13. V. Geethamma, R. Joseph, and S. Thomas, J. Appl. Polym. Sci., 55, 583 (1995) https://doi.org/10.1002/app.1995.070550405
  14. D. Cho, H. S. Lee, S. O. Han, and W. H. Park, in Proc. ACUN-5, Developments in Composites:Advanced, Infrastructural, Natural, and Nano-Composites, 462, Sydney (2006)
  15. W. Qiu, T. Endo, and T. Hirotsu, Eur. Polym. J., 42, 1059 (2006) https://doi.org/10.1016/j.eurpolymj.2005.11.012
  16. L. B. Manfredi, E. S. Rodriguez, M. Wladyka-Przybylak, and A. Vazquez, Polym. Degrad. Stabil., 91, 255 (2006) https://doi.org/10.1016/j.polymdegradstab.2005.05.003
  17. http://www.sewonchem.co.kr/ Sewon Chem. Co., Ltd
  18. http://www.kolonglotech.co.kr/products/fiber/industry.asp Kolonglotech Co., Ltd
  19. http://www.eb-tech.com/products/elv.html EB_Tech Co., Ltd
  20. D. Klemm, B. Philipp, T. Heinze, U. Heinze, and W. Wagenknecht, Comprehensive Cellulose Chemistry: I. Fundamentals and analytical Methods, Weinheim, Germany, Wiley-VCH, 1998
  21. Kh. M. Mannan, Polymer, 34, 2485 (1993) https://doi.org/10.1016/0032-3861(93)90576-V
  22. D. Ray, B. K. Sarkar, S. Das, and A. K. Rana, Comp. Sci. Tech., 62, 911 (2002) https://doi.org/10.1016/S0266-3538(02)00005-2
  23. B. Wunderlich, Assignment of the Glass Transition, R. J. Seyler, Ed., ASTM STP 1249, 17 (1994)
  24. R. Sanadi, J. F. Hunt, D. F. Caulfield, G. Kovacsvolgyi, and B. Destree, Conference on Woodfiber-Plastic Composites, 121 (2001)
  25. A. K. Rana, B. C. Mitra, and A. N. Banerjee, J. Appl. Polym. Sci., 71, 531 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990124)71:4<531::AID-APP2>3.0.CO;2-I
  26. R. Siegel, S. Chang, B. Ash, J. Stone, P. Ajayan, and R. Doremus, Sci. Mater., 44, 2061 (2001) https://doi.org/10.1016/S1359-6462(01)00892-2
  27. K. Lozano, J. Bonilla-Rios, and E. V. Barrera, J. Appl. Polym. Sci., 80, 1162 (2001) https://doi.org/10.1002/app.1200
  28. R. Seguela and F. Rietsch, Polymer, 27, 532 (1986) https://doi.org/10.1016/0032-3861(86)90238-7
  29. N. S. Hon David and N. Shiraishi, Wood and cellulose chemistry, New York and Basel, Mercel Dekker Inc., 1991
  30. S. Ouajai and R. A. Shanks, Polym. Degrad. Stabil., 89, 327 (2005) https://doi.org/10.1016/j.polymdegradstab.2005.01.016