Platinum-Catalyzed and Ion-Selective Polystyrene Fibrous Membrane by Electrospinning and In-Situ Metallization Techniques

  • Hong, Seung-Hee (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Lee, Sun-Ae (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Nam, Jae-Do (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Lee, Young-Kwan (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Tae-Sung (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Won, Sung-Ho (Microelectronic Packaging R&D Center Sungkyunkwan University)
  • 발행 : 2008.04.30

초록

A platinum-catalyzed polyelectrolyte porous membrane was prepared by solid-state compression of electrospun polystyrene (PS) fibers and in-situ metallization of counter-balanced ionic metal sources on the polymer surface. Using this ion-exchange metal-polymer composite system, fiber entangled pores were formed in the interstitial space of the fibers, which were surrounded by sulfonic acid sites ($SO_3^-$) to give a cation-selective polyelectrolyte porous bed with an ion exchange capacity ($I_{EC}$) of 3.0 meq/g and an ionic conductivity of 0.09 S/cm. The Pt loading was estimated to be 16.32 wt% from the $SO_3^-$ ions on the surface of the sulfonated PS fibers, which interact with the cationic platinum complex, $Pt(NH_3)_4^{2+}$, at a ratio of 3:1 based on steric hindrance and the arrangement of interacting ions. This is in good agreement with the Pt loading of 15.82 wt% measured by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The Pt-loaded sulfonated PS media showed an ionic conductivity of 0.32 S/cm. The in-situ metallized platinum provided a nano-sized and strongly-bound catalyst in robust porous media, which highlights its potential use in various electrochemical and catalytic systems.

키워드

참고문헌

  1. T. H. Han, D. O. Kim, Y. K. Lee, S. J. Suh, H. C. Jung, Y. S. Oh, and J. D. Nam, Macromol. Rapid Commun., 27, 1483 (2006) https://doi.org/10.1002/marc.200600312
  2. B. C. H. Steele and A. Heinzel, Nature, 414, 345 (2001) https://doi.org/10.1038/35104620
  3. S. M. J. Zaidi and M. I. Ahmad, J. Membrane Sci., 279, 548 (2006) https://doi.org/10.1016/j.memsci.2005.12.048
  4. J. H. Cho and F. Caruso, Chem. Mater., 17, 4547 (2005) https://doi.org/10.1021/cm050972b
  5. O. A. Baturina, S. R. Aubuchon, and K. J. Wynne, Chem. Mater., 18, 1498 (2006) https://doi.org/10.1021/cm052660e
  6. J. H. Nam, Y. Y. Jang, Y. U. Kwon, and J. D. Nam, Electrochem. Commun., 6, 737 (2004) https://doi.org/10.1016/j.elecom.2004.05.016
  7. K. Lee, J. H. Nam, J. H. Lee, Y. Lee, S. M. Cho, C. H. Jung, H. G. Choi, Y. Y. Chang, Y. U. Kwon, and J. D. Nam, Electrochem. Commun., 7, 113 (2005) https://doi.org/10.1016/j.elecom.2004.11.011
  8. J. H. Lee, J. H. Lee, J. D. Nam, H. R. Choi, K. M. Jung, W. J. Jeon, Y. K. Lee, K. J. Kim, and Y. S. Tak, Sensors & Actuators A, 118, 98 (2005) https://doi.org/10.1016/j.sna.2004.07.001
  9. N. Kato and F. J. Caruso, J. Phys.Chem. B, 109, 19604 (2005)
  10. J. Mann, N. Yao, and A. B. Bocarsly, Langmuir, 22, 10432 (2006) https://doi.org/10.1021/la061200c
  11. E. P. Murray, T. Tsai, and S. A. Barnett, Nature, 400, 649 (1999) https://doi.org/10.1038/23220
  12. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, Chem. Rev., 104, 4587 (2004) https://doi.org/10.1021/cr020711a
  13. N. Asano, A. Makoto, S. Suzuki, K. Miyatake, H. Uchida, and M. Watanabe, J. Am. Chem. Soc., 128, 1762 (2006) https://doi.org/10.1021/ja0571491
  14. C. H. Rhee, H. K. Kim, H. Chang, and J. S. Lee, Chem. Mater., 17, 1691 (2005) https://doi.org/10.1021/cm048058q
  15. Z. Chen, B. Holmberg, W. Li, X. Wang, W. Deng, R. Munoz, and Y. Yan, Chem. Mater., 18, 5669 (2006) https://doi.org/10.1021/cm060841q
  16. A. R. Tan, L. M. Carvalho, and A. S. Gomes, Macromol. Symp., 229, 168 (2005)
  17. P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, and S. Kaliaguine, Macromolecules, 37, 7960 (2004) https://doi.org/10.1021/ma0494941
  18. S. Swier, V. Ramani, J. M. Fenton, H. R. Kunz, M. T. Shaw, and R. A. Weiss, J. Membrane Sci., 256, 122 (2005)
  19. C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, and M. Pineri, Polymer, 42, 359 (2001) https://doi.org/10.1016/S0032-3861(00)00384-0
  20. N. Carretta, V. Tricoli, and F. Picchioni, J. Membrane Sci., 166, 189 (2000) https://doi.org/10.1016/S0376-7388(99)00258-6
  21. M. M. Nasef, N. A. Zubir, A. F. Ismail, K. Z. M. Dahlan, H. Saidi, and M. Khayet, J. Power Sources, 156, 200 (2006) https://doi.org/10.1016/j.jpowsour.2005.05.053
  22. T. Yamaguchi, H. Kuroki, and F. Miyata, Electrochem. Commun., 7, 730 (2005) https://doi.org/10.1016/j.elecom.2005.04.030
  23. A. Frenot and I. S. Chronakis, Curr. Opin. Colloid Interface Sci., 8, 64 (2003) https://doi.org/10.1016/S1359-0294(03)00004-9
  24. Y. H. Lee, J. H. Lee, I. G. An, C. Kim, D. S. Lee, Y. K. Lee, and J. D. Nam, Biomaterials, 26, 3165 (2005) https://doi.org/10.1016/j.biomaterials.2004.08.018
  25. S. W. Choi, J. R. Kim, Y. R. Ahn, S. M. Jo, and E. J. Cairns, Chem. Mater., 19, 104 (2007) https://doi.org/10.1021/cm060223+
  26. H. Dong, E. Fey, A. Gandelman, and W. Jones, Chem. Mater., 18, 2008 (2006) https://doi.org/10.1021/cm052436p
  27. M. Watanabe, H. Uchida, and H. Igarashi, Macromol. Symp., 156, 223 (2000)
  28. S. J. Lee, S. Mukerjee, J. McBreen, Y. W. Rho, Y. T. Kho, and T. H. Lee, Electrochim. Acta, 24, 3693 (1998)
  29. M. Pan, H. Tang, S. P. Jiang, and Z. J. Liu, Electrochem. Soc., 152, A1081 (2005) https://doi.org/10.1149/1.1901103
  30. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, Science, 267, 1629 (1995) https://doi.org/10.1126/science.267.5204.1629
  31. S. Kubo, Z. Z. Gu, D. A. Tryk, Y. Ohko, O. Sato, and A. Fujishima, Langmuir, 18, 5043 (2002) https://doi.org/10.1021/la020176+
  32. O. Prucker and J. Ruhe, Macromolecules, 31, 592 (1998) https://doi.org/10.1021/ma970660x
  33. J. H. Lee, D. W. Kim, G. S. Song, Y. G. Lee, S. B. Jung, and J. D. Nam, Macromol. Rapid Commun., 28, 634 (2007) https://doi.org/10.1002/marc.200600757
  34. P. A. Schueler, J. T. Ives, F. DeLaCroix, W. B. Lacy, P. A. Becker, J. Li, K. D. Caldwell, B. Drake, and J. M. Harris, Anal. Chem., 65, 3177 (1993) https://doi.org/10.1021/ac00070a003
  35. A. B. R. Mayer, W. Grebner, and R. Wannemacher, J. Phys. Chem. B, 104, 7278 (2000) https://doi.org/10.1021/jp000568u
  36. P. Lianos and J. K. Thomas, J. Colloid Interf. Sci., 117, 505 (1987) https://doi.org/10.1016/0021-9797(87)90411-5
  37. S. Shibata, K. Aoki, T. Yano, and M. Yamane, J. Sol-Gel Sci. Tech., 11, 279 (1998) https://doi.org/10.1023/A:1008610413657
  38. V. G. Pol, D. N. Srivastava, O. Palchik, V. Palchik, M. A. Slifkin, A. M. Weiss, and A. Gedanken, Langmuir, 18, 3352 (2002) https://doi.org/10.1021/la0155552
  39. B. Wang, Z. Ji, F. T. Zimone, G. M. Janowski, and J. M. Rigsbee, Surf. Coat. Technol., 91, 64 (1997) https://doi.org/10.1016/S0257-8972(96)03115-5
  40. J. Zhang, J. Liu, S. Wang, P. Zhan, Z. Wang, and N. Ming, Adv. Funct. Mater., 14, 1089 (2004) https://doi.org/10.1002/adfm.200400119
  41. S. L. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas, Langmuir, 14, 5396 (1998) https://doi.org/10.1021/la980380q
  42. A. Dokoutchaev, J. T. James, S. C. Koene, S. Pathak, G. K. S. Prakash, and M. E. Thompson, Chem. Mater., 11, 2389 (1999) https://doi.org/10.1021/cm9900352
  43. J. P. Shin, B. J. Chang, J. H. Kim, S. B. Lee, and D. H. Suh, J. Membrane Sci., 251, 247 (2005) https://doi.org/10.1016/j.memsci.2004.09.050
  44. K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee, Polymer, 44, 4029 (2003) https://doi.org/10.1016/S0032-3861(03)00345-8
  45. C. K. Shin, G. Maier, and G. G. Scherer, J. Membrane Sci., 245, 163 (2004) https://doi.org/10.1016/j.memsci.2004.08.010
  46. N. Walsby, M. Paronen, J. Juhanoja, and F. Sundholm, J. Appl. Polym. Sci., 81, 1572 (2001) https://doi.org/10.1002/app.1587
  47. J. S. Casasa, Y. Paraj-a, Y. Romeroa, A. $S{\ddag}nchez-Gonz{\ddag}leza$, J. Sordoa, and E. M. Z. $V{\ddag}zquez-L—pezb$, Anorg. Allg. Chem., 630, 980 (2004) https://doi.org/10.1002/zaac.200400069