Synthesis of Polystyrene Nanoparticles with Monodisperse Size Distribution and Positive Surface Charge Using Metal Stearates

  • Kim, Mi-Sun (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Seok-Ki (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Lee, Jun-Young (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Cho, Seung-Hyun (Polymer Technology Institute, Sungkyunkwan University) ;
  • Lee, Ki-Hoon (Polymer Technology Institute, Sungkyunkwan University) ;
  • Kim, Jun-Kyung (Polymer Hybrids Research Center, Korea Institute of Science and Technology) ;
  • Lee, Sang-Soo (Polymer Hybrids Research Center, Korea Institute of Science and Technology)
  • Published : 2008.02.29

Abstract

Polystyrene (PS) nanospheres with a monodisperse size distribution, positive surface charge and high molecular weight were successfully synthesized using various types of metal stearates in an aqueous NaOH medium. The diameter of the PS nanospheres was controlled from 80 to 450 nm by changing the type of metal stearate. It was also found that controlling the NaOH concentration in solution was important for producing monodisperse PS nanoparticles. The nanospheres prepared with zinc stearate possessed a positive surface charge of 60 to 80 mV, confirming that PS particles were functionalized with metal stearates. It is believed that the metal stearates provide PS particles with not only colloidal stability but also a positive surface charge.

Keywords

References

  1. A. Kondo and H. Fukuda, Colloid Surface A, 153, 435 (1999)
  2. R. M. Renault, P. Denjean, and R. B. Pansu, Sensor Actuat. B, 59, 108 (1999)
  3. M. O. M. Edwards, T. Gruszecki, H. Pettersson, G. Thuraisingham, and A. Hagfeldt, Electrochem. Commun., 4, 963 (2002)
  4. S. Y. Lin, C. S. Chern, T. J. Hsu, C. T. Hsu, and I. Capek, Polymer, 42, 1481 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  5. G. Tuin, J. H. J. E. Senders, and H. N. Stein, J. Colloid Inter. Sci., 176, 522 (1996)
  6. H. Lee, S. Yu, K. Jeong, and Y. Kim, Macromol. Res., 15, 547 (2007) https://doi.org/10.1007/BF03218829
  7. I. Chen, J. Mort, M. A. Machonkin, J. R. Larson, and F. Bonsignore, J. Appl. Phys., 80, 6796 (1996)
  8. C. E. Reese, C. D. Guerrerom, J. M. Weissman, K. Lee, and S. A. Asher, J. Colloid Interf. Sci., 232, 76 (2000)
  9. Z. W. Wang, G. Z. Li, D. R. Guan, X. Z. Yi, and A. J. Lou, J. Colloid Interf. Sci., 246, 302 (2002)
  10. J. Jang, J. Ha, and S. Kim, Macromol. Res., 15, 154 (2007) https://doi.org/10.1007/BF03218767
  11. S. S. Madaeni and M. Ghanbarian, Polym. Int., 49, 1356 (2000)
  12. S.-J. Fang, F. Fujimoto, S. Kondo, and H. Kawaguchi, Colloidal Polymer Science, 278, 864 (2000)
  13. J. Blaakmeer and G. J. Fleer, Colloids and Surfaces, 36, 439 (1989)
  14. K. Landfester, Macromol. Rapid Commun., 22, 896 (2001) https://doi.org/10.1002/1521-3927(20010101)22:1<1::AID-MARC1>3.0.CO;2-T
  15. K. Landfester, N. Bechthold, F. Tiarks, and M. Anronietti, Macromolecules, 32, 5222 (1999)
  16. S. Toda, A. Sakai, and Y. Kojima, Spectrochimi. Acta., 27a, 581 (1971)
  17. T. Ishioka, K. Maeda, I. Watanabe, S. Kawauchi, and M. Harada, Spectrochim. Acta. A, 56, 1731 (2000)
  18. M. T. Benaniba, N. B-Bensemra, and G. Gelbard, Polym. Degrad. Stabil., 74, 501 (2001)