Ring-Opening Polymerization of $\varepsilon$-Caprolactone and Cyclohexene Oxide Initiated by Aluminum $\beta$-Ketoamino Complexes: Steric and Electronic Effect of 3-Position Substituents of the Ligands

  • Liu, Binyuan (Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology) ;
  • Li, Haiqing (Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha, Chang-Sik (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim, Il (Department of Polymer Science and Engineering, Pusan National University) ;
  • Yan, Weidong (Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology)
  • Published : 2008.07.31

Abstract

A series of aluminum complexes supported by $\beta$-ketoamino, ligand-bearing, 3-position substituents $LAlEt_2$ ($L=CH_3C(O)C(Cl)=C(CH_3)NAr\;(L_1)$, $L=CH_3C(O)C(H)=C(CH_3)NAr\;(L_2)$, $L=CH_3C(O)C(Ph)=C(CH_3)NAr\;(L_3)$, and $L=CH_3C(O)C(Me)=C(CH_3)NAr\;(L_4)$, $Ar=2,6-^iPr_2C6H_3$) were synthesized in situ and employed in the ring-opening polymerization (ROP) of $\varepsilon$-caprolactone ($\varepsilon$-CL) and cyclohexene oxide (CHO). The 3-position substituents on the $\beta$-ketoamino ligand backbone of the aluminum complexes influenced the catalyst activity remarkably for both ROP of $\varepsilon$-CL and CHO. Aluminum $\beta$-ketoamino complexes displayed different catalytic behavior in ROP of $\varepsilon$-CL and CHO. The order of the catalytic activity of $LAlEt_2$ was $L_1AlEt_2$>$L_2AlEt_2$>$L_3AlEt_2$>$L_4AlEt_2$ for ROP of $\varepsilon$-CL, being opposite to the electron-donating ability of the 3-position substituents on the $\beta$-ketoamino ligand, while the order of the catalytic activity for ROP of CHO was $L_1AlEt_2$>$L_3AlEt_2$>$L_4AlEt_2$>$L_2AlEt_2$. The effects of reaction temperature and time on the ROP were also investigated for both $\varepsilon$-CL and CHO.

Keywords

References

  1. Y. Ohtsuka, T. Ikeno, and T. Yamada, Tetrahedron. Asymm., 11, 3671 (2000) https://doi.org/10.1016/S0957-4166(00)00369-4
  2. T. Mita, T. Ikeno, and T. Yamada, Org. Lett., 4, 2457 (2002) https://doi.org/10.1021/ol026079p
  3. D. Jones, A. Roberts, K. Cavell, W. Keim, U. Englert, B. W. Skelton, and A. H. White, J. Dalton. Trans., 255 (1998)
  4. Y. Z. Zh, J. Y. Liu, Y. S. Li, and Y. J. Tong, J. Organomet. Chem., 689, 1295 (2004) https://doi.org/10.1016/j.jorganchem.2004.01.028
  5. X. H. He, Y. Z. Yao, X. Luo, J. K. Zhang, Y. H. Liu, L. Zhang, and Q. Wu, Organometallics, 22, 4952 (2003) https://doi.org/10.1021/om030292n
  6. L. M.Tang, Y. Q. Duan, L. Pan, and Y. S. Li, J. Polym. Sci.; Part A: Polym. Chem., 43, 1681 (2005) https://doi.org/10.1002/pola.20630
  7. H. Y. Wang, J. Zhang, X. Meng, and G. X. Jin, J. Organomet. Chem., 691, 1275 (2006) https://doi.org/10.1016/j.jorganchem.2005.12.001
  8. D. Zhang, G. X. Jin, L. H. Weng, and F. S. Wang, Organometallics, 23, 327 (2004)
  9. F. Bao, X. Q. Lue, B. S. Kang, and Q. Wu, Eur. Polym. J., 42, 928 (2006) https://doi.org/10.1016/j.eurpolymj.2005.09.026
  10. B. Y. Liu, C. Y. Tian, L. Zhang, W. D. Yan, and W. J. Zhang, J. Polym. Sci.; Part A: Polym. Chem., 44, 6243 (2006) https://doi.org/10.1002/pola.21715
  11. R. C. Yu, C. H. Hung, J. H. Huang, H. Y. Lee, and J. T. Chen, Inorg. Chem., 41, 6450 (2002) https://doi.org/10.1021/ic025785j
  12. P. Shuka, J. C. Gordon, A. H. Cowley, and J. N. Jones, J. Organometal. Chem., 690, 1366 (2005) https://doi.org/10.1016/j.jorganchem.2004.12.011
  13. P. C. Kuo, I. C. Chen, H. M. Lee, C. H. Hung, and J. H. Huang, Inorg. Chim. Acta., 358, 3761 (2005) https://doi.org/10.1016/j.ica.2005.07.001
  14. S. Doherty, R. J. Errington, N. Housley, and W. Clegg, Organometallics, 23, 2382 (2004) https://doi.org/10.1021/om0343770
  15. H. E. Yamamoto, Lewis Acids in Organic Synthesis, Wiley-VCH, New York, 2000
  16. D. A. Atwood and M. J. Harvey, Chem. Rev., 101, 37 (2001) https://doi.org/10.1021/cr990008v
  17. T. Aida and S. Inoue, Acc. Chem. Res., 29, 39 (1996) https://doi.org/10.1021/ar950029l
  18. Y. C. Liu, B. T. Ko, and C. C. Lin, Macromolecules, 34, 6196 (2001) https://doi.org/10.1021/ma0104579
  19. C. T. Chen, C. A. Huang, and B. H. Huang, Dalton. Trans., 3799 (2003)
  20. X. Pang, H. Z. Du, X. S. Chen, X. L. Zhuang, D. M. Cui, and X. B. Jing, J. Polym. Sci.; Part A: Polym. Chem., 43, 6605 (2005) https://doi.org/10.1002/pola.21108
  21. S. M. Timol, A. B. Luximon, and D. Jhurry, Macmol. Symp., 231, 69 (2006)
  22. P. Hormnirun, E. L. Marshall, V. C. Gibson, A. J. P. White, and D. J. Williams, J. Am. Chem. Soc., 126, 2688 (2004) https://doi.org/10.1021/ja038757o
  23. D. R. Moore, M. Cheng, E. B. Lobkovsky, and G. W. Coates, Angew. Chem. Int. Ed., 41, 2599 (2002) https://doi.org/10.1002/1521-3773(20020715)41:14<2599::AID-ANIE2599>3.0.CO;2-N
  24. N. Nomura, T. Aoyama, R. Ishii, and T. Kondo, Macromolecules, 38, 5363 (2005) https://doi.org/10.1021/ma050606d
  25. L. M. Alcazar-Roman, B. J. O'Keefe, M. A. Hillmyer, and B. T. William, Dalton. Trans., 3082 (2003)
  26. S. H. Byun, H. S. Seo, S. H. Lee, C. S. Ha, and I. Kim, Macromol. Res., 15, 393 (2007) https://doi.org/10.1007/BF03218804
  27. J. Tian, Y. K. Feng, and Y. S. Xu, Macromol. Res., 14, 209 (2006) https://doi.org/10.1007/BF03218511
  28. W. Clegg, E. K. Cope, A. J. Edwards, and F. S. Mair, Inorg. Chem., 37, 2317 (1998) https://doi.org/10.1021/ic970956j
  29. D. H. Mcdaniel and H. C. Brown, J. Org. Chem., 23, 420 (1958) https://doi.org/10.1021/jo01097a026