Preparation and Characterization of Polypropylene/Waste Ground Rubber Tire Powder Microcellular Composites by Supercritical Carbon Dioxide

  • Zhang, Zhen Xiu (School of Nano and Advanced Materials Engineering, Gyeongsang National University) ;
  • Lee, Sung-Hyo (School of Nano and Advanced Materials Engineering, Gyeongsang National University) ;
  • Kim, Jin-Kuk (School of Nano and Advanced Materials Engineering, Gyeongsang National University) ;
  • Zhang, Shu Ling (School of Nano and Advanced Materials Engineering, Gyeongsang National University, Alan G. MacDiarmid Lab, College of Chemistry, Jilin University) ;
  • Xin, Zhen Xiang (School of Nano and Advanced Materials Engineering, Gyeongsang National University, Key Laboratory of Rubber-Plastics (QUST) of Ministry of Education, Qingdao University of Science and Technology)
  • Published : 2008.07.31

Abstract

In order to obtain 'value added products' from polypropylene (PP)/waste ground rubber tire powder (WGRT) composites, PP/WGRT microcellular foams were prepared via supercritical carbon dioxide. The effects of blend composition and processing condition on the cell size, cell density and relative density of PP/WGRT micro-cellular composites were studied. The results indicated that the microcellular structure was dependent on blend composition and processing condition. An increased content of waste ground rubber tire powder (WGRT) and maleic anhydride-grafted styrene-ethylene-butylene-styrene (SEBS-g-MA) reduced the cell size, and raised the cell density and relative density, whereas a higher saturation pressure increased the cell size, and reduced the cell density and relative density. With increasing saturation temperature, the cell size increased and the relative density decreased, whereas the cell density initially increased and then decreased.

Keywords

References

  1. K. W. Suh, C. P. Park, M. J. Maurer, M. H. Tusim, R. D. Genova, R. Broos, and P. S. Daniel, Adv. Mater., 12, 1779 (2000) https://doi.org/10.1002/1521-4095(200012)12:23<1779::AID-ADMA1779>3.0.CO;2-3
  2. V. Kumar, Cell. Polym., 12, 207 (1993)
  3. D. L. Tomasko, H. Li, D. Liu, and X. Han, Ind. Eng. Chem. Res., 42, 6431 (2003) https://doi.org/10.1021/ie030199z
  4. D. I. Collias and D. G. Baird, Polymer, 35, 3978 (1994) https://doi.org/10.1016/0032-3861(94)90283-6
  5. B. Krause, H. J. P. Sijbesma, P. MYnYklu, N. F. A. Van der Vegt, and M. Wessling, Macromolecules, 34, 8792 (2001) https://doi.org/10.1021/ma010854j
  6. S. Doroudiani, C. B. Park, and M. T. Kortschot, Polym. Eng. Sci., 36, 2645 (1999) https://doi.org/10.1002/pen.10664
  7. S. K. Goel and E. J. Beckman, Polym. Eng. Sci., 34, 1137 (1994) https://doi.org/10.1002/pen.760341407
  8. J. E. Martini-Vvedensky, N. P. Suh, and F. A.Waldman, U.S. Patent 4,473,665 (1984)
  9. J. S. Chiou, J. W. Barlow, and D. R. Paul, J. Appl. Polym. Sci., 30, 2633 (1985) https://doi.org/10.1002/app.1985.070300626
  10. H. E. Naguib, C. B. Park, U. Panzer, and N. Reichelt, Polym. Eng. Sci., 42, 1481 (2002) https://doi.org/10.1002/pen.11045
  11. N. C.Nayak and D. K.Tirpathy, J. Mat. Sci., 37, 1347 (2002) https://doi.org/10.1023/A:1014564411168
  12. J. Z. Liang and R. K. Y. Li, J. Appl. Polym. Sci., 77, 409 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000711)77:2<409::AID-APP18>3.0.CO;2-N
  13. G. K. Jana and C. K. Das, Macromol. Res., 13, 30 (2005) https://doi.org/10.1007/BF03219012
  14. C. K. Kum, Y. T. Sung, and Y. S. Kim, et al., Macromol. Res., 15, 308 (2007) https://doi.org/10.1007/BF03218792
  15. S. H. Lee, B. Maridass, and J. K. Kim, J. Appl. Polym. Sci., 106, 3209 (2007) https://doi.org/10.1002/app.26490
  16. D. I. Collias, D. G. Baird, and R. J. M. Borggreve, Polymer, 35, 3978 (1994) https://doi.org/10.1016/0032-3861(94)90283-6
  17. L. M. Matuana, C. B. Park, and J. J. Balatinecz, Polym. Eng. Sci., 38, 1862 (1998) https://doi.org/10.1002/pen.10356
  18. E. Lievana, Recycling of Ground Tyre Rubber and Polyolefin Wastes by Producing Thermoplastic Elastomers, Doctoral dissertation, Argentina, 2005, Chapter 5, p. 99
  19. L. M. Matuana, C. B. Park, and J. J. Balatinecz, Cellul. Polym. 17, 1 (1998)
  20. L. M. Matuana, C. B. Park, and J. J. Balatinecz, Polym. Eng. Sci., 37, 1137 (1997) https://doi.org/10.1002/pen.11758
  21. Z. X. Zhang, V. Sridhar, and J. K. Kim, Polymer Composites, 2007 (Accepted)
  22. S. H. Lee, Study on Dynamic Reaction on Olefinic Thermoplastic Vulcanizate Using Waste Ground Rubber Tire Powder, Doctoral dissertation, South Korea, 2006, Chapter 4, p.186
  23. K. A. Arora, A. J. Lesser, and T. J. McCarthy, Macromolecules, 31, 4614 (1998) https://doi.org/10.1021/ma971811z
  24. C. M. Stafford, T. P. Russell, and T. J. McCarthy, Macromolecules, 32, 7610 (1999) https://doi.org/10.1021/ma9902100
  25. K. N. Lee, H. J. Lee, and J. H. Kim, Polym. Int., 49, 712 (2000) https://doi.org/10.1002/1097-0126(200007)49:7<712::AID-PI439>3.0.CO;2-W
  26. M. T. Liang and C. M. Wang, Ind. Eng. Chem. Res., 39, 4622 (2000) https://doi.org/10.1021/ie000062y
  27. S. Doroudiani, C. B. Park, and M. T. Kortschot, Polym. Eng. Sci., 36, 2645 (1996) https://doi.org/10.1002/pen.10664