Cutting Fluid Effluent Removal by Adsorption on Chitosan and SDS-Modified Chitosan

  • Piyamongkala, Kowit (Department of Chemical Technology, Faculty of Science, Chulalongkorn University) ;
  • Mekasut, Lursuang (Department of Chemical Technology, Faculty of Science, Chulalongkorn University) ;
  • Pongstabodee, Sangobtip (Department of Chemical Technology, Faculty of Science, Chulalongkorn University)
  • Published : 2008.08.31

Abstract

This study examined the adsorption of a synthetic cutting fluid and cutting fluid effluent on chitosan and SDS-modified chitosan, Chitosan and SDS-modified chitosan were prepared in form of beads and fibers. A series of batch experiments were carried out as a function of the initial concentration of cutting fluid, contact time and pH of the fluid. The contact angle study suggested that the SDS-modified chitosan was more hydrophobic than chitosan. The Zeta potential study showed that chitosan, SDS-modified chitosan and synthetic cutting fluid had a point of zero charge (PZC) at pH 7.8, 9 and 3.2, respectively. SDS-modified chitosan has a greater adsorption capacity than chitosan. The experimental results show that adsorption capacity of the cutting fluid on 1.0 g of SDS-modified chitosan at pH 3 and for a contact time of 120 min was approximately 2,500 g/kg. The adsorption capacity of chitosan and SDS-modified chitosan increased with decreasing pH. The Langmuir, Freundlich, and Brunauer Emmett and Teller (BET) adsorption models were used to explain the adsorption isotherm. The Langmuir isotherm fitted well with the experimental data of chitosan while the BET isotherm fitted well with the SDS-modified chitosan data. Pseudo first- and second-order kinetic models and intraparticle diffusion model were used to examine the kinetic data. The experimental data was fitted well to a pseudo second-order kinetic model. The significant uptake of cutting fluid on chitosan and SDS-modified chitosan were demonstrated by FT-IR spectroscopy, SEM and heat of combustion.

Keywords

References

  1. J. Marchese, N. A. Ochoa, C. Pagliero, and C. Almandoz, Environ. Sci. Technol., 34, 2990 (2000) https://doi.org/10.1021/es9909069
  2. G. Rios, C. Pazos, and J. Coca, Colloid Surface A, 138, 383 (1998) https://doi.org/10.1016/S0927-7757(97)00083-6
  3. A. Y. Hosny, Sep. Technol., 6, 9 (1996) https://doi.org/10.1016/0956-9618(95)00136-0
  4. N. Moulai Mostefa and M. Tir, Desalination, 161, 115 (2004) https://doi.org/10.1016/S0011-9164(04)90047-1
  5. M. Belkacem, H. Matamoros, C. Cabassud, Y. Aurelle, and J. Cotteret, J. Membrane Sci., 106, 195 (1995) https://doi.org/10.1016/0376-7388(95)00093-R
  6. P. Janknecht, A. D. Lopes, and A. M. Mendes, Environ. Sci. Technol., 38, 4878 (2004) https://doi.org/10.1021/es0348243
  7. J. R. Portela, J. Lopez, E. Nebot, and E. Martinez de la Ossa, J. Hazard. Mater., 88, 95 (2001) https://doi.org/10.1016/S0304-3894(01)00295-3
  8. T. Viraraghavan and G. N. Mathavan, Oil Chem. Pollut., 4, 261 (1988) https://doi.org/10.1016/S0269-8579(88)80002-9
  9. C. Solisio, A. Lodi, A. Converti, and M. D. Borghi, Water Res., 36, 899 (2002) https://doi.org/10.1016/S0043-1354(01)00304-9
  10. B. C. Son, K. Park, S. H. Song, and Y. J. Yoo, Korean J. Chem. Eng., 21, 1168 (2004) https://doi.org/10.1007/BF02719489
  11. S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian, Water Res., 33, 2469 (1999) https://doi.org/10.1016/S0043-1354(98)00475-8
  12. V. M. Boddu, K. Abburi, J. L. Talbott, and E. D. Smith, Environ. Sci. Technol., 37, 4449 (2003) https://doi.org/10.1021/es021013a
  13. J. R. Evans, W. G. Davids, J. D. MacRae, and A. Amirbahman, Water Res., 36, 3219 (2002) https://doi.org/10.1016/S0043-1354(02)00044-1
  14. C. Jeon and W. H. Hll, Water Res., 37, 4770 (2003) https://doi.org/10.1016/S0043-1354(03)00431-7
  15. W. S. Wan Ngah, C. S. Endud, and R. Mayanar, React. Funct. Polym., 50, 181 (2002) https://doi.org/10.1016/S1381-5148(01)00113-4
  16. A. R. Cestari, E. F. S. Vieira, A. G. P. dos Santos, J. A. Mota, and V. P. de Almeida, J. Colloid Interf. Sci., 280, 380 (2004) https://doi.org/10.1016/j.jcis.2004.08.007
  17. M.-S. Chiou, P.-Y. Ho, and H.-Y. Li, Dyes and Pigments, 60, 69 (2004) https://doi.org/10.1016/S0143-7208(03)00140-2
  18. A. L. Ahmad, S. Sumathi, and B. H. Hameed, Water Res., 39 2483 (2005) https://doi.org/10.1016/j.watres.2005.03.035
  19. A. L. Ahmad, S. Sumathi, and B. H. Hameed, Chem. Eng. J., 108 179 (2005) https://doi.org/10.1016/j.cej.2005.01.016
  20. S. Pongstabodee, K. Piyamongkala, and L. Mekasut, Thai Patent No.0601004582
  21. X. Zhang and R. Bai, J. Colloid Interf. Sci., 264, 30 (2003) https://doi.org/10.1016/S0021-9797(03)00393-X
  22. A. I. Zouboulis and A. Avranas, Colloid Surface A, 172, 153 (2000)
  23. J. M. Montgomery, Water Treatment Principles and Design, John Wiley and Sons, Inc., New York, 1985
  24. L. D. Benefield, J. F. Judkins, and B. L. Weand, Processes Chemistry for Water and Wastewater Treatment, Prentice-Hall, Inc., Englewood, 1982
  25. D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Spectroscopy, 3ed, Harcourt College Publishers, Orlando, 2001