Antiapoptotic Fusion Protein Delivery Systems

  • Published : 2008.08.31

Abstract

Apoptosis is a natural cell suicide mechanism to maintain homeostasis. However, many of the diseases encountered today are caused by aberrant apoptosis where excessive apoptosis leads to neurodegenerative disorders, ischemic heart disease, autoimmune disorders, infectious diseases, etc. A variety of antiapoptotic agents have been reported to interfere with the apoptosis pathway. These agents can be potential drug candidates for the treatment or prevention of diseases caused by dysregulated apoptosis. Obviously, world-wide pharmaceutical and biotechnology companies are gearing up to develop antiapoptotic drugs with some products being commercially available. Polymeric drug delivery systems are essential to their success. Recent R&D efforts have focused on the chemical or bioconjugation of antiapoptotic proteins with the protein transduction domain (PTD) for higher cellular uptake with antibodies for specific targeting as well as with polymers to enhance the protein stability and prolonged effect with success observed both in vivo and in vitro. All these different fusion antiapoptotic proteins provide promising results for the treatment of dysregulated apoptosis diseases.

Keywords

References

  1. W. Y. Lai, C. T. Chien, C. L. Cheng, B. C. Yang, S. M. Hsu, and P. H. Lee, Transplantation Proceedings, 31, 2924 (1999)
  2. B. Brune, Cell Death Differ., 10, 864 (2003) https://doi.org/10.1038/sj.cdd.4401261
  3. M. C. Raff, Nature, 356, 397 (1992) https://doi.org/10.1038/356397a0
  4. J. Hessler, A. Budor, K. Putchakayala, A. Mecke, D. Rieger, M. M. B. Holl, B. G. Orr, A. Bielinska, J. Beals, and J. Baker, Langmuir, 21, 9280 (2005) https://doi.org/10.1021/la051837g
  5. G. S. Salvesen and V. M. Dixit, Cell, 91, 443 (1997) https://doi.org/10.1016/S0092-8674(00)80430-4
  6. M. O. Hengartner, Nature, 407, 770 (2000) https://doi.org/10.1038/35037710
  7. G. M. Cohen, J. Biochem., 326, 1 (1997) https://doi.org/10.1042/bj3260001
  8. C. A. Smith, T. Farrah, and R. G. Goodwin, Cell, 76, 959 (1994) https://doi.org/10.1016/0092-8674(94)90372-7
  9. H. J. Gruss and S. K. Dower, Blood, 85, 3378 (1995)
  10. S. Nagata, Cell, 88, 355 (1997) https://doi.org/10.1016/S0092-8674(00)81874-7
  11. A. M. Chinnaiyan, K. O'Rourke, G. L. Yu, R. H. Lyons, M. Garg, D. R. Duan, L. Xing, R. Gentz, J. Ni, and V. M. Dixit, Science, 274, 990 (1996) https://doi.org/10.1126/science.274.5289.990
  12. S. A. Marsters, J. P. Sheridan, and C. J. Donahue et al., Current Biology, 6, 1669 (1996) https://doi.org/10.1016/S0960-9822(02)70791-4
  13. J. Kitson et al., Nature, 384, 372 (1996) https://doi.org/10.1038/384372a0
  14. J. L. Bodmer, K. Burns, P. Schneider, K. Hofmann, V. Steiner, M. Thome, T. Bornand, M. Hahne, M. Schroter, K. Becker, A. Wilson, L. E. French, J. L. Browning, H. R. MacDonald, and J. Tschopp, Immunity, 6, 79 (1997) https://doi.org/10.1016/S1074-7613(00)80244-7
  15. G. Screaton et al., Proc. Natl. Acad. Sci. USA, 94, 4615 (1997)
  16. G. Pan et al., Science, 276, 111 (1997) https://doi.org/10.1126/science.276.5309.111
  17. J. P. Sheridan, S. A. Marsters, and R. M. Pitti et al., Science, 277, 818 (1997) https://doi.org/10.1126/science.277.5327.818
  18. H. Walczak, M. A. Degli-Eposti, and R. S. Johnson et al., J. EMBO, 16, 5386 (1997) https://doi.org/10.1093/emboj/16.17.5386
  19. G. S. Wu, T. F. Burns, and E. R. McDonald et al., Nature Genet., 17, 141 (1997) https://doi.org/10.1038/ng1097-141
  20. MacFarlane et al., J. Biol. Chem., 272, 25417 (1997) https://doi.org/10.1074/jbc.272.41.25417
  21. A. Ashkenazi, Nat. Rev. Cancer, 2, 420 (2002) https://doi.org/10.1038/nrc821
  22. U. Sartorius, I. Schmitz, and P. H. Krammer, Chembiochem., 2, 20 (2001) https://doi.org/10.1002/1439-7633(20010105)2:1<20::AID-CBIC20>3.0.CO;2-X
  23. X. Luo, I. Budihardjo, H. Zou, C. Slaughter, and X. Wang, Cell, 94, 481 (1998) https://doi.org/10.1016/S0092-8674(00)81589-5
  24. H. Zou, W. J. Henzel, X. Liu, A. Lutschg, and X. Wang, Cell, 90, 405 (1997) https://doi.org/10.1016/S0092-8674(00)80501-2
  25. E. A. Slee, M. T. Harte, R. M. Kluck, B. B. Wolf, C. A. Casiano, D. D. Newmeyer, H. G. Wang, J. C. Reed, D. W. Nicholson, E. S. Alnemri, D. R. Green, and S. J. Martin, J. Cell Biol., 144, 281 (1999) https://doi.org/10.1083/jcb.144.2.281
  26. X. Wang, Genes Dev., 15, 2922 (2001)
  27. S. B. Bratton, M. MacFarlane, K. Cain, and G. M. Cohen, Exp. Cell. Res., 256, 27 (2000) https://doi.org/10.1006/excr.2000.4835
  28. C. Du, M. Fang, Y. Li, L. Li, and X. Wang, Cell, 102, 33 (2000) https://doi.org/10.1016/S0092-8674(00)00008-8
  29. A. M. Verhagen et al., Cell, 102, 43 (2000) https://doi.org/10.1016/S0092-8674(00)00009-X
  30. B. Fadeel, S. Orrenius, and B. Zhivotovsky, Biochem. Biophys. Res. Commun., 266, 699 (1999) https://doi.org/10.1006/bbrc.1999.1888
  31. B. Fadeel and S. Orrenius, J. Inter. Med., 258, 479 (2005) https://doi.org/10.1111/j.1365-2796.2005.01570.x
  32. P. H. Krammer, Adv. Immunol., 71, 163 (1999)
  33. D. Nicholson, Nat. Biotechnol., 14, 297 (1996) https://doi.org/10.1038/nbt0396-297
  34. C. B. Thompson, Science, 267, 1456 (1995) https://doi.org/10.1126/science.7878464
  35. S. Ohsako and K. B. Elkon, Cell Death Diff., 6, 13 (1999) https://doi.org/10.1038/sj.cdd.4400459
  36. J. E. Springer, R. D. Azbill, and P. E. Knapp, Nature Med., 5, 943 (1999) https://doi.org/10.1038/11387
  37. F. G. Gervias, D. Xu, G. S. Robertson, J. P. Vaillancourt, Y. Zhu, J. Huang, A. LeBlanc, D. Smith, M. Rigby, M. S. Shearman, E. E. Clarke, H. Zheng, L. H. T. VanDerPloeg, S. C. Ruffolo, N. A. Thornberry, S. Xanthoudakis, R. J. Zamboni, S. Roy, and D. W. Nicholson, Cell, 97, 395 (1999) https://doi.org/10.1016/S0092-8674(00)80748-5
  38. I. Sanchez, C. J. Xu, P. Juo, A. Kakizaka, J. Blenis, and J. Yuan, Neuron, 22, 623 (1999) https://doi.org/10.1016/S0896-6273(00)80716-3
  39. J. Kajstura, W. Cheng, and K. Reiss et al., Lab. Invest., 74, 86 (1996)
  40. A. Abbate, R. Bussanib, M. S. Amina, G. W. Vetroveca, and A. Baldic, Int. Biochem. Cell Biol., 38, 1834 (2006) https://doi.org/10.1016/j.biocel.2006.04.010
  41. M. Zhao and R. Weissleder, Med. Res. Rev., 24, 1 (2004) https://doi.org/10.1002/med.10056
  42. S. Futaki, S. Goto, and Y. Sugiura, J. Mol. Recognit., 16, 260 (2003) https://doi.org/10.1002/jmr.635
  43. A. Prochiantz, Curr. Opin. Cell. Biol., 12, 400 (2000) https://doi.org/10.1016/S0955-0674(00)00108-3
  44. S. Futaki, Adv. Drug Deliv. Rev., 57, 547 (2005) https://doi.org/10.1016/j.addr.2004.10.009
  45. S. R. Schwarze, A. Ho, A. Vocero-Akbani, and S. F. Dowdy, Science, 285, 1569 (1999) https://doi.org/10.1126/science.285.5433.1569
  46. E. Vives, P. Brodin, and B. Lebleu, J. Biol. Chem., 272, 16010 (1997) https://doi.org/10.1074/jbc.272.25.16010
  47. P. A. Wender, D. J. Mitchell, K. Pattabiraman, E. T. Pelkey, L. Steinman, and J. B. Rothbard, Proc. Natl. Acad. Sci. USA, 97, 13003 (2000)
  48. K. H. Han, M. J. Jeon, S. H. Kim, D. Ki, J. H. Bahn, and K. S. Lee et al., Mol. Cells, 12, 267 (2001)
  49. D. Derossi, S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing, and A. Prochiantz, J. Biol. Chem., 272, 18188 (1996)
  50. W. C. Shen and H. J. Ryser, Proc. Natl. Acad. Sci. USA, 75, 1872 (1978)
  51. H. J. Ryser, I. Drummond, and W. C. Shen, J. Cell Physiol., 113, 167 (1982) https://doi.org/10.1002/jcp.1041130126
  52. M. S. Dilber, A. Phelan, A. Aints, A. J. Mohamed, G. Elliott, C. I. Smith, and P. OHare, Gene Ther., 6, 12 (1999) https://doi.org/10.1038/sj.gt.3300838
  53. C. S. Liu, B. Kong, H. H. Xia, K. A. Ellem, and M. Q. Wei, J. Gene Med., 3, 145 (2001) https://doi.org/10.1002/jgm.164
  54. W. F. Cheng, C. F. Hung, K. F. Hsu, C. Y. Chai, L. He, and J. M. Polo et al., Hum. Gene Ther., 13, 553 (2002) https://doi.org/10.1089/10430340252809847
  55. G. Cutrona, E. M. Carpaneto, M. Ulivi, S. Roncella, O. Landt, M. Ferrarini, and L. C. Boffa, Nat. Biotechnol., 18, 300 (2000) https://doi.org/10.1038/73745
  56. M. C. Morris, J. Depollier, J. Mery, F. Heitz, and G. Divita, Nature Biotech., 19, 1173 (2001) https://doi.org/10.1038/nbt1201-1173
  57. J. Ryu, K. Han, J. Park, and S. Y. Choi, Mol. Cells, 16, 385 (2005)
  58. G. Cao, W. Pei, H. Ge, Q. Liang, Y. Luo, and F. R. Sharp et al., J. Neurosci., 22, 5423 (2002) https://doi.org/10.1523/JNEUROSCI.22-13-05423.2002
  59. J. Embury, D. Klein, An. Pileggi, M. Ribeiro, S. Jayaraman, R. D. Molano, C. Fraker, N. Kenyon, C. Ricordi, L. Inverardi, and R. L. Pastori, Diabetes, 50, 1706 (2001) https://doi.org/10.2337/diabetes.50.8.1706
  60. J. Bian, Z. B. Popovic, C. Benejam, M. Kiedrowski, L. L. Rodriguez, and M. S. Penn, Circ Res., 100, 1540 (2007) https://doi.org/10.1161/CIRCRESAHA.107.101102
  61. J. H. Cho, I. K. Hwang, K. Y. Yoo, S. Y. Kim, D. W. Kim, Y. G. Kwon, S. Y. Choi, and M. H. Won, Neurochem. Int., 52, 659 (2008) https://doi.org/10.1016/j.neuint.2007.08.013
  62. J. J. An, Y. P. Lee, S. Y. Kim, S. H. Lee, M. J. Lee, M. S. Jeong, D. W. Kim, S. H. Jang, K. Y. Yoo, M. H. Won, T. C. Kang, O. S. Kwon, S. W. Cho, K. S. Lee, J. S. Park, W. S. Eum, and S. Y. Choi, FEBS Journal, 275, 1296 (2008) https://doi.org/10.1111/j.1742-4658.2008.06291.x
  63. J. P. Zhou, Z. G . Feng, B. L. Yuan, S. Z. Yu, Q. Li, H. Y. Qu, and M. J. Sun, Brain Res., 1191, 12 (2008) https://doi.org/10.1016/j.brainres.2007.10.097
  64. F. Nagel, B. H. Falkenburger, L. Tonges, S. Kowsky, C. Poppelmeyer, J. B. Schulz, M. Bahr, and G. P. H. Dietz, J. Neurochem., 105, 853 (2008) https://doi.org/10.1111/j.1471-4159.2007.05204.x
  65. Y. F. Fan, C. Z. Lu, J. Xie, Y. X. Zhao, and G. Y. Yang, Neurochem. Int., 48, 50 (2006) https://doi.org/10.1016/j.neuint.2005.07.008
  66. M. Arakawa, M. Yasutakeb, M. Miyamoto, T. Takano, S. Asoh, and S. Ohta, Life Sciences, 80, 2076 (2007) https://doi.org/10.1016/j.lfs.2007.03.012
  67. R. S. Hotchkiss, K. W. McConnell, K. Bullok, C. G. Davis, K. C. Chang, S. Schwulst, J. C. Dunne, G. P. H. Dietz, M. Bahr, J. E. McDunn, I. E. Karl, T. H. Wagner, J. P. Cobb, C. M. Coopersmith, and D. Piwnica-Worms, J. Immunol., 176, 5471 (2006) https://doi.org/10.4049/jimmunol.176.9.5471
  68. S. Krautwald, E. Ziegler, K. Tiede, R. Pust, and U. Kunzendorf, J. Biol. Chem., 279, 44005 (2004) https://doi.org/10.1074/jbc.M401327200
  69. U. Kilic, E. Kilic, G. P. Dietz, and M. U. Bahr, Stroke, 34, 1304 (2003) https://doi.org/10.1161/01.STR.0000066869.45310.50
  70. G. P. Dietz, E. Kilic, and M. Bahr, Mol. Cell Neurosci., 21, 29 (2002) https://doi.org/10.1006/mcne.2002.1165
  71. A. B. Gustafsson, M. R. Sayen, S. D. Williams, M. T. Crow, and R.A. Gottlieb, Circulation, 106, 735 (2002) https://doi.org/10.1161/01.CIR.0000023943.50821.F7
  72. J. C. Reed, Oncogene, 17, 3225 (1998) https://doi.org/10.1038/sj.onc.1202591
  73. V. S. Marsden, L. O'Connor, L. A. O'Reilly, J. Silke, D. Metcalf, and P. G. Ekert et al., Nature, 419, 634 (2002) https://doi.org/10.1038/nature01101
  74. F. Madeddu, S. Naska, and Y. Bozzi, NeuroReport, 15, 2045 (2004) https://doi.org/10.1097/00001756-200409150-00010
  75. S. Asoh, T. Ohtsu, and S. Ohta, J. Biol. Chem., 275, 37240 (2000) https://doi.org/10.1074/jbc.M005841200
  76. J. E. Hansen, R. H. Weisbart, and R. N. Nishimura, Scient. World J., 16, 782 (2005)
  77. R. H. Weisbart, J. E. Hansen, R. N. Nishimura, G. Chan, R. Wakelin, S. S. Chang, L. Baresi, and J. S. Chamberlain, J. Drug Target, 13, 81 (2005) https://doi.org/10.1080/10611860400029002
  78. J. E. Hansen, W. Sohn, C. Kim, S. S. Chang, N. C. Huang, D. G. Santos, G. Chan, R. H. Weisbart, and R. N. Nishimura, Brain Res., 1088, 187 (2006) https://doi.org/10.1016/j.brainres.2006.03.025
  79. R. E. Kontermann, Methods, 34, 163 (2004) https://doi.org/10.1016/j.ymeth.2004.04.002
  80. D. Colcher, G. Pavlinkova, G. Beresford, B. J. M. Booth, A. Choudhury, and S. L. Batra, W. J. Nucl. Med., 43, 225 (1998)
  81. W. Wells, I.-M. Harwerth, M. Zwickl, N. Hardman, B. Groner, and N. E. Hynes, Bio/Techonology, 10, 1128 (1992) https://doi.org/10.1038/nbt1092-1128
  82. A. Carrier, F. Ducancel, N. B. Settiawan, L. Cattolico, B. Maillere, M. Leonetti, P. Drevet, A. Menez, and J. C. Boulain, J. Immunol. Methods, 181, 177 (1995) https://doi.org/10.1016/0022-1759(94)00344-V
  83. V. K. Chaudhary, C. Queen, R. P. Junghans, T. A. Waldmann, D. J. FitzGerald, and I. Pastan, Nature, 339, 394 (1989) https://doi.org/10.1038/339394a0
  84. J. K. Batra, P. G. Kasprzyk, R. E. Bird, I. Pastan, and C. R. King, Proc. Natl. Acad. Sci. USA, 89, 5867 (1992)
  85. Y. Reiter and I. Pastan, Trends Biotechnol., 16, 513 (1998) https://doi.org/10.1016/S0167-7799(98)01226-8
  86. P. Fuchs, F. Breitling, S. Dubel, T. Seehaus, and M. Little, Bio/Technology, 9, 1369 (1991) https://doi.org/10.1038/nbt1291-1369
  87. A. Piche, J. Grim, C. Rancourt, J. Gomez-Navarro, J. C. Reed, and D. T. Curiel, Cancer Res., 58, 2134 (1998)
  88. P. Chames, J. Fieschi, D. Baty, and D. Duche, J. Bacteriol., 180, 514 (1998)
  89. T. H. Huang and S. L. Morrison, J. Pharmacol. Exp. Ther., 316, 983 (2006) https://doi.org/10.1124/jpet.105.095513
  90. S. J. Webb, D. J. Harrison, and A. H. Wyllie, Adv. Pharmacol., 41, 1 (1997) https://doi.org/10.1016/S1054-3589(08)61052-2
  91. N. K. Banda, J. Bernier, and D. K. Kurahara et al., J. Exp. Med., 176, 1099 (1992) https://doi.org/10.1084/jem.176.4.1099
  92. C. A. Rubio, Nature Medicine, 3, 253 (1997)
  93. M. A. Nieto and A. Lopez-Rivas, J. Immunol., 143, 4166 (1989)
  94. F. Mor and I. R. Cohen, J. Immunol., 156, 515 (1996)
  95. M. Armant, G. Delespesse, and M. Sarfati, Immunology, 85, 331 (1995)
  96. V. P. Torchilin and A. N. Lukyanov, Drug Discov., 8, 259 (2003)
  97. C. W. Lee, Macromol. Res., 12, 63 (2004) https://doi.org/10.1007/BF03218996
  98. C. W. Lee, Macromol. Res., 12, 71 (2004) https://doi.org/10.1007/BF03218997
  99. Y. K. Joung, J. S. Lee, and K. D. Park et al., Macromol. Res., 16, 66 (2008) https://doi.org/10.1007/BF03218963
  100. J. P. Faure, T. Hauet, and Z. Han et al., J. Pharmacol. Exp. Ther., 302, 861 (2002) https://doi.org/10.1124/jpet.102.033688
  101. S. Bertuglia, F. M. Veronese, and G. Pasut, Am. J. Physiol. Heart Circ. Physiol., 291, H1536 (2006) https://doi.org/10.1152/ajpheart.01114.2005
  102. G. Malet, A. G. Martin, and M. Orzaez et al., Cell Death Differ., 13, 1523 (2006) https://doi.org/10.1038/sj.cdd.4401828
  103. M. J. Vicent and E. Perez-Paya, J. Med. Chem., 49, 3763 (2006) https://doi.org/10.1021/jm060458x
  104. K. Kataoka, A. Harada, and Y. Nagasaki, Adv. Drug Del. Rev., 47, 113 (2001) https://doi.org/10.1016/S0169-409X(00)00124-1
  105. Y. L. Tseng, J. J. Liu, and R. L. Hong, Mol. Pharmacol., 62, 864 (2002) https://doi.org/10.1124/mol.62.4.864
  106. L. Liu, K. Guo, J. Lu, S. S. Venkatraman, D. Luo, K. C. Ng, E. A. Ling, S. Moochhala, and Y. Y. Yang, Biomaterials, 29, 1509 (2008) https://doi.org/10.1016/j.biomaterials.2007.11.014
  107. C. Marty, C. Meylan, H. Schott, K. Ballmer-Hofer, and R. A. Schwendener, Cell Mol. Life Sci., 61, 1785 (2004)
  108. A. H. Schapira, Lancet, 368, 70 (2006) https://doi.org/10.1016/S0140-6736(06)68970-8
  109. D. C. Chan, Cell, 125, 1241 (2006) https://doi.org/10.1016/j.cell.2006.06.010
  110. Y. Yamada, H. Akita, H. Kamiya, K. Kogure, T. Yamamoto, Y. Shinohara, K. Yamashita, H. Kobayashi, H. Kikuchi, and H. Harashima, Biochim, Biophys, Acta., 1778, 423 (2008) https://doi.org/10.1016/j.bbamem.2007.11.002
  111. K. Maruyama, T. Takizawa, T. Yuda, S. J. Kennel, L. Huang, and M. Iwatsuru, Biochem. Biophys. Acta., 1234, 74 (1995) https://doi.org/10.1016/0005-2736(94)00263-O
  112. Y. L. Tseng, R. L. Hong, M. H. Tao, and F. H. Chang, Int. J. Cancer, 80, 723 (1999) https://doi.org/10.1002/(SICI)1097-0215(19990301)80:5<723::AID-IJC16>3.0.CO;2-L
  113. K. Maruyama, Biosci. Rep., 22, 251 (2002) https://doi.org/10.1023/A:1020138622686
  114. J. W. Park, C. C. Benz, and F. J. Martin, Semin. Oncol., 31, 196 (2004)