Mechanism of Enzymatic Degradation of Poly(butylene succinate)

  • Lee, Chan-Woo (Department of Innovative Industrial Technology, Hoseo University) ;
  • Kimura, Yoshiharu (Department of Polymer Science and Engineering, Kyoto Institute of Technology) ;
  • Chung, Jin-Do (Department of Environmental Engineering, Hoseo University)
  • Published : 2008.10.31

Abstract

Poly(butylene succiate) (PBS), poly(butylene succinate-co-L-lactate) (PBSL), and poly(butylene succinate-co-6-hydroxycaproate) (PBSCL) polymers were degraded by lipase $PS^{(R)}$, and the enzymatic degradation mechanism of PBS was analyzed in detail. The enzymatic degradation of PBS gave 4-hydroxybutyl succinate (4HBS) as the main product. An exo-type hydrolysis mechanism was proposed based on this observation. The terminal chain of PBS had conformational similarity to ordinary tri- and diglycerides and could be incorporated as a substrate in the active site of this lipase. The surface adsorption of the lipase was much larger on PBS and its copolymer films than on the other polyester films because the lipase adhered quite strongly to the polymer terminal through a specific adsorption mechanism. Kinetic analysis showed that the total number of surface adsorption points per unit area of PBSL and PBSCL copolymers was larger than that of the PBS homopolymer.

Keywords

References

  1. Y. Kumagai, Makromol. Chem., 193, 53 (1992) https://doi.org/10.1002/macp.1992.021930105
  2. Y. Tokiwa, T. Szuki, and K. Takeda, Agric. Biof. Chem., 50, 1323 (1986) https://doi.org/10.1271/bbb1961.50.1323
  3. M. Mochizuki, M. Hirano, Y. Kanmuri, K. Kudo, and Y. Tokiwa, J. Appl. Polym. Sci., 55, 289 (1995) https://doi.org/10.1002/app.1995.070550212
  4. Y. Doi, Y. Kanesawa, and M. Kunioka, Macromolecules, 23, 26 (1990) https://doi.org/10.1021/ma00203a006
  5. H. Abe, I. Matsubara, and Y. Doi, Macromolecules, 28, 844 (1995) https://doi.org/10.1021/ma00108a007
  6. A. V. Shyichuk, J. Appl. Polym. Sci., 62, 1735 (1996) https://doi.org/10.1002/(SICI)1097-4628(19961205)62:10<1735::AID-APP26>3.0.CO;2-Z
  7. N. Nimura and T. Kinoshita. Anal. Lett., 13(3A), 191 (1980) https://doi.org/10.1080/00032718008082552
  8. S. A. Barker, J. A. Monti, S. T. Christian, F. Benington, and R. D. Morin, Anal. Biochem., 107, 116 (1980) https://doi.org/10.1016/0003-2697(80)90500-X
  9. M. Horiike, Master's Thesis, Kyoto Instistute of Technology (2000)
  10. Y. Iwasaki, A. Fujitake, K. Kurita, and K. Ishihara, J. Biomater. Sci.-Polym. E, 8, 91 (1996)
  11. Y. Iwasaki, K. Kurita, K. Ishihara, and N. Nakabayashi, J. Biomater. Sci.-Polym. E, 8, 151 (1996)
  12. M. Scandola, M. L. Focarete, and G. Frisoni, Macromolecules, 31, 3846 (1998) https://doi.org/10.1021/ma980137y
  13. K. Mukai, K. Yamada, and Y. Doi, Int. J. Biol. Macromol., 15, 361 (1993) https://doi.org/10.1016/0141-8130(93)90054-P
  14. U. Bornscheuer, O. W. Reif, R. Freitag, T. Schepter, F. N. Kolisis, and U. Menge, Makromol. Chem., 1201, 15 (1994)
  15. J. D. Schrag, Y. Li, M. Cygler, D. Lang, T. Burgdorf, H. J. Hecht, R. Schmid, D. Schomburg, T. J. Rydel, J. D. Oliver, L. C. Strickland, C. M. Dunaway, S. B. Larson, and A. M. Pherson, Structure, 5, 2 (1997)
  16. S. Lee, Y. Lee, and J. W. Lee, Macromol. Res., 15, 44 (2007) https://doi.org/10.1007/BF03218751
  17. Y. K. Lee, S. M. Hong, and J. S. Kim, Macromol. Res., 15, 330 (2007) https://doi.org/10.1007/BF03218795
  18. S. J. Im, Y. M. Choi, and E. Subramanyam, Macromol. Res., 15, 363 (2007) https://doi.org/10.1007/BF03218800
  19. J. S. Park, J. M. Kim, and S. J. Lee, Macromol. Res., 15, 424 (2007) https://doi.org/10.1007/BF03218809
  20. K. Kasuya, Y. Inoue, and Y. Doi, Int. J. Biol. Macromol., 19, 35 (1996) https://doi.org/10.1016/0141-8130(96)01097-5