Mechanical Behavior of Shape Memory Fibers Spun from Nanoclay-Tethered Polyurethanes

  • Hong, Seok-Jin (Department of Materials Science and Engineering, Seoul National University) ;
  • Yu, Woong-Ryeol (Department of Materials Science and Engineering, Seoul National University) ;
  • Youk, Ji-Ho (Department of Advanced Fiber Engineering, Division of Nano-System, Inha University)
  • 발행 : 2008.10.31

초록

This study examined the effect of nanoclays on the shape memory behavior of polyurethane (PU) in fibrous form. A cation was introduced into the PU molecules to disperse the organo-nanoclay (MMT) into poly($\varepsilon$-caprolactone) (PCL)-based PU (PCL-PU). The MMT/PCL-PU nanocomposites were then spun into fibers through melt-processing. The shape memory performance of the spun fibers was examined using a variety of thermo-mechanical tests including a new method to determine the transition temperature of shape memory polymers. The MMTs showed an improved the fixity strain rate of the MMT /PCL- PU fibers but a slight decrease in their recovery strain rate. This was explained by the limited movement of PU molecules due to the presence of nanoclays. The shape memory performance of the MMT/PCL-PU fibers was not enhanced significantly by the nanoclays. However, their recovery power was improved significantly up to a strain of approximately 50%.

키워드

참고문헌

  1. W. J. Choi, S. H. Kim, Y. Jin Kim, and S. C. Kim, Polymer, 45, 6045 (2004) https://doi.org/10.1016/j.polymer.2004.06.033
  2. P. C. LeBaron, Z. Wang, and T. J. Pinnavaia, Appl. Clay Sci., 15, 11 (1999) https://doi.org/10.1016/S0169-1317(99)00017-4
  3. A. Lendlein and S. Kelch, Angew. Chem. Int. Edit., 41, 2034 (2002) https://doi.org/10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
  4. X. D. Guoqin Liu, Y. Cao, Z. Zheng, and Y. Peng, Macromol. Rapid Comm., 26, 649 (2005) https://doi.org/10.1002/marc.200400640
  5. B. K. Kim, S. Y. Lee, and M. Xu, Polymer, 37, 5781 (1996) https://doi.org/10.1016/S0032-3861(96)00442-9
  6. J. W. Cho and S. H. Lee, Eur. Polym. J., 40, 1343 (2004) https://doi.org/10.1016/j.eurpolymj.2004.01.041
  7. C. Liu, H. Qin, and P. T. Mather, J. Mater. Chem., 17, 1543 (2007) https://doi.org/10.1039/b615954k
  8. S. Rezanejad and M. Kokabi, Eur. Polym. J., 43, 2856 (2007) https://doi.org/10.1016/j.eurpolymj.2007.04.031
  9. F. Cao and S. C. Jana, Polymer, 48, 3790 (2007) https://doi.org/10.1016/j.polymer.2007.04.027
  10. A. Lendlein and S. Kelch, Clin. Hemorheol. Micro., 32, 105 (2005)
  11. S. Sinha Ray and M. Okamoto, Prog. Polym. Sci., 28, 1539 (2003) https://doi.org/10.1016/j.progpolymsci.2003.08.002
  12. P. Ping, W. Wang, X. Chen, and X. Jing, Biomacromolecules, 6, 587 (2005) https://doi.org/10.1021/bm049477j
  13. J. W. Cho, Y. C. Jung, Y.-C. Chung, and B. C. Chun, J. Appl. Polym. Sci., 93, 2410 (2004) https://doi.org/10.1002/app.20747
  14. J. C. Kim and J. H. Chang, Macromol. Res., 15, 449 (2007) https://doi.org/10.1007/BF03218813
  15. S. Khvan, J. Kim, and S. S. Lee, Macromol. Res., 15, 51 (2007) https://doi.org/10.1007/BF03218752
  16. Y. H. Kim, S. J. Choi, and J. M. Kim, Macromol. Res., 15, 676 (2007) https://doi.org/10.1007/BF03218949