Controlling Size and Distribution of Silver Nanoparticles Generated in Inorganic Silica Nanofibers Using Poly(vinyl pyrrolidone)

  • Min, Kyung-Dan (Department of Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Park, Won-Ho (Department of Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Youk, Ji-Ho (Department of Advanced Fiber Engineering, Intelligent Textile System Research Center, Inha University) ;
  • Kwark, Young-Je (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • Published : 2008.10.31

Abstract

Poly(vinyl pyrrolidone) was used successfully to control the size and distribution of silver nanoparticles generated on inorganic silica nanofibers. The inorganic nanofibers were electro spun using sol-gel chemistry of silicates, and the diameter of the prepared nanofibers was unaffected by adding up to 7% of poly(vinyl pyrrolidone). The silver ions, in the form of silver nitrate, were introduced into the silica nanofibers and reduced to metallic silver by ultraviolet irradiation with a subsequent thermal treatment. The size of the generated silver particles was decreased dramatically by adding poly(vinyl pyrrolidone). The size of the silver nanoparticles was 73 nm when no poly(vinyl pyrrolidone) was added but 23 nm with the addition of only 1% of poly(vinyl pyrrolidone). The extent of reduction could be checked by determining the concentration of silver ions leached into water from the silica nanofibers. After thermal treatment of the silica nanofibers, more than 99% of the silver remained in the nanofibers, indicating almost complete reduction of the silver ions to silver metal.

Keywords

References

  1. D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004) https://doi.org/10.1002/adma.200400719
  2. A. Frenot and I. S. Chronakis, Curr. Opin. Colloid In., 8, 64 (2003) https://doi.org/10.1016/S1359-0294(03)00004-9
  3. D. K. Kim, S. H. Park, and B. C. Kim, Macromol. Res., 13, 521 (2005) https://doi.org/10.1007/BF03218490
  4. L. Huang, K. Nagapundi, and E. L. Chaikof, J. Biomater. Sci.-Polym. E, 12, 979 (2001) https://doi.org/10.1163/156856201753252516
  5. X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, Nano Lett., 2, 1273 (2002) https://doi.org/10.1021/nl020216u
  6. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res. Part A, 60, 613 (2002) https://doi.org/10.1002/jbm.10167
  7. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Biomacromolecules, 3, 232 (2002) https://doi.org/10.1021/bm015533u
  8. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, Comp. Sci. Tech., 63, 2223 (2003) https://doi.org/10.1016/S0266-3538(03)00178-7
  9. H. S. Park and Y. O. Park, Korean J. Chem. Eng., 22, 165 (2005) https://doi.org/10.1007/BF02701480
  10. Y. H. Jung, H. Y. Kim, and D. R. Lee, Macromol. Res., 13, 385 (2005) https://doi.org/10.1007/BF03218470
  11. M. Catauro, M. G. Raucci, F. de Gaetano, and A. Marotta, J. Mater. Sci., 15, 831 (2004) https://doi.org/10.1007/BF00552091
  12. E. Verne, S. di Nunziio, M. Bosetti, P. Appendino, C. V. Brovarone, G. Maina, and M. Cannas, Biomaterials, 26, 5111 (2005) https://doi.org/10.1016/j.biomaterials.2005.01.038
  13. S. L. Percival, P. G. Bowler, and D. Russell, J. Hospital Infection, 60, 1 (2005) https://doi.org/10.1016/j.jhin.2004.11.014
  14. B. Jansen, M. Rinck, P. Wolbring, A. Strohmeier, and T. Jahnns, J. Biomater. Appl., 9, 55 (1994) https://doi.org/10.1177/088532829400900103
  15. H. Y. Kang, M. J. Jung, and Y. K. Jeong, Korean J. Biotechnol. Bioeng., 15, 521 (2000)
  16. U. Klueh, V. Wagner, S. Kelly, A. Johnson, and J. D. Bryers, J. Biomed. Mater. Res., 53, 621 (2000) https://doi.org/10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q
  17. D. C. Clupper and L. L. Hench, J. Mater. Sci. Mater. Med., 12, 917 (2001) https://doi.org/10.1023/A:1012836426866
  18. I. Sondi and B. Salopek-Sondi, J. Colloid Interf. Sci., 275, 177 (2004) https://doi.org/10.1016/j.jcis.2004.02.012
  19. Q. B. Yang, D. M. Li, Y. L. Hong, Z. Y. Li, C. Wang, S. L. Qiu, and Y. Wei, Synth. Met., 137, 973 (2003) https://doi.org/10.1016/S0379-6779(02)00963-3
  20. W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park, Macromol. Rapid. Commun., 25, 1632 (2004) https://doi.org/10.1002/marc.200400323
  21. W. K. Son, J. H. Youk, and W. H. Park, Carbohy. Polym., 65, 430 (2006) https://doi.org/10.1016/j.carbpol.2006.01.037
  22. W. K. Son, D. Cho, and W. H. Park, Nanotechnology, 17, 439 (2006) https://doi.org/10.1088/0957-4484/17/2/016
  23. G. Larson, R. Velarde-Ortiz, K. Minchow, A. Barrero, and I. G. Loscertales, J. Am. Chem. Soc., 125, 1154 (2003) https://doi.org/10.1021/ja028983i
  24. Y. Wang and J. J. Santigano-Aviles, Nanotechnology, 15, 32 (2004) https://doi.org/10.1088/0957-4484/15/1/006
  25. S.-S. Choi, S. G. Lee, S. S. Im, and S. H. Kim, J. Mater. Sci. Lett., 22, 891 (2003) https://doi.org/10.1023/A:1024475022937
  26. H. S. Park, J. H. Lee, and J. D. Nam, Macromol. Res., 14, 430 (2006) https://doi.org/10.1007/BF03219106
  27. K. D. Min, J. H. Youk, Y.-J. Kwark, and W. H. Park, Fibers and Polymers, 8, 591 (2007) https://doi.org/10.1007/BF02875995
  28. Z. Zhang, B. Zhao, and L. Hu, J. Solid State Chem., 121, 105 (1996) https://doi.org/10.1006/jssc.1996.0015
  29. H. Wang, X. Qiao, J. Chen, and S. Ding, Colloid Surface A, 256, 111 (2005) https://doi.org/10.1016/j.colsurfa.2004.12.058
  30. W.-J. Jin, H. K. Lee, E. H. Jeong, W. H. Park, and J. H. Youk, Macromol. Rapid Commun., 26, 1903 (2005) https://doi.org/10.1002/marc.200500569
  31. K. H. Hong, J. L. Park, I. H. Sul, J. H. Youk, and T. J. Kang, J. Polym. Sci. Part B: Polym. Phys., 44, 2468 (2006) https://doi.org/10.1002/polb.20913