A Study on the Copolymerization Kinetics of Phenylethyl Acrylate and Phenylethyl Methacrylate

  • Lee, Han-Na (Dept. of Materials Science and Engineering, Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology) ;
  • Tae, Gi-Yoong (Dept. of Materials Science and Engineering, Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology) ;
  • Kim, Young-Ha (Dept. of Materials Science and Engineering, Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology)
  • 발행 : 2008.10.31

초록

Copolymers of phenyl alkyl acrylates/methacrylates are used clinically as soft materials for the foldable intraocular lens (IOL) to treat cataracts. In this study, copolymers of 2-phenylethyl acrylate (PEA) and 2-phenylethyl methacrylate (PEMA) of various compositions were prepared using free radical polymerization in solution. The composition of the copolymers was determined by $^1H$-NMR analysis. The reactivity ratios of the monomers were calculated using the conventional Fineman-Ross or Kelen-Tudos method. The reactivity ratio of PEA ($r_1$) and PEMA ($r_2$) were estimated to be 0.280 and 2.085 using the Kelen-Tudos method, respectively. These values suggest that PEMA is more reactive in copolymerization than PEA, and the copolymers will have a higher content of PEMA units. The glass transition temperature ($T_g$) of the copolymers increased with increasing PEMA content. The molecular weight and polydispersity indices ($M_w/M_n$) of the polymers were determined by GPC. Overall, these results are expected to be quite useful in applications to foldable soft IOL materials.

키워드

참고문헌

  1. S. Imafuku, M. Hamano, and H. Iwamoto, European Pat. No. WO96/25962
  2. M. Chehade and M. J. Elder, Australian and New Zealand J. Ophthalmol., 25, 255 (1997) https://doi.org/10.1111/j.1442-9071.1997.tb01512.x
  3. P. N. Arnold, J. Cataract. Refract. Surg., 16, 646 (1990) https://doi.org/10.1016/S0886-3350(13)80787-0
  4. T. Kohnen, J. Cataract. Refract. Surg., 22, 1255 (1996) https://doi.org/10.1016/S0886-3350(96)80079-4
  5. K. Slowinski, M. Misiuk-Hojlo, and M. Szalinski, Polimery w medycynie, 37, 35 (2007)
  6. Q. Chao, Chin. Ophthalmic. Res., 22, 666 (2004)
  7. A. Yamanaka, Y. Yokoyama, and H. Iwamoto, J. Artif. Organs., 9, 67 (2006) https://doi.org/10.1007/s10047-005-0323-y
  8. K. Hayashi, H. Hayashi, F. Nakao, and F. Hayashi, J. Cataract. Refract. Surg., 22, 743 (1996) https://doi.org/10.1016/S0886-3350(96)80314-2
  9. N. Mamalis, B. Davis, C. D. Nilson, M. S. Hickman, and R. M. Leboyer, J. Cataract. Refract. Surg., 30, 2209 (2004) https://doi.org/10.1016/j.jcrs.2004.06.051
  10. G. J. Jaffe, Am. J. Ophthalmol., 124, 692 (1997) https://doi.org/10.1016/S0002-9394(14)70911-0
  11. J. P. McCulley, Eye and Contact Lens, 29, 155 (2003) https://doi.org/10.1097/01.ICL.0000072833.79456.2D
  12. P. R. Barrett, J. Cataract. Refract. Surg., 25, 72 (1999) https://doi.org/10.1016/S0886-3350(99)80014-5
  13. K. T. Oh, J. Cataract. Refract. Surg., 22, 667 (1996) https://doi.org/10.1016/S0886-3350(96)80299-9
  14. J. K. Shugar, J. Cataract. Refract. Surg., 22, 1355 (1996) https://doi.org/10.1016/S0886-3350(96)80097-6
  15. J. K. Shugar, C. Lewis, and A. Lee, J. Cataract. Refract. Surg., 22, 1368 (1996) https://doi.org/10.1016/S0886-3350(96)80100-3
  16. C. A. Egan, P. J. Kottos, I. C. Francis, M. B. Kappagoda, R. S. Schumacher, K. A. Boytel, M. J. Haylen, and S. Alexander, J. Cataract. Refract. Surg., 22, 1272 (1996) https://doi.org/10.1016/S0886-3350(96)80083-6
  17. R. D. Stulting, W. J. Lahners, and J. D. Carr, Cornea, 19, 741 (2000) https://doi.org/10.1097/00003226-200009000-00019
  18. D. D. Koch, Alcon AcrySof acrylic intraocular lens, R. G. Martin, J. P. Gills, and D. R. Sanders, Eds., Foldable Intraocular Lenses, N. J. Thorofare, Slack Inc, 1993, pp 161-177
  19. T. Oshika, Y. Suzuki, H. Kizaki, and S. Yaguchi, J. Cataract. Refract. Surg., 22, 104 (1996) https://doi.org/10.1016/S0886-3350(96)80278-1
  20. A. W. Lloyd, R. G. A. Faragher, and S. P. Denyer, Biomaterials, 22, 769 (2001) https://doi.org/10.1016/S0142-9612(00)00237-4
  21. M. Fineman and S. P. Ross, J. Polym. Sci., 5, 259 (1950) https://doi.org/10.1002/pol.1950.120050210
  22. T. Kelen and F. Tudos, J. Macromol. Sci. Pure Appl. Chem., A9, 1 (1975)
  23. D. Chikhaoui-Grioune, A. Benaboura, and R. Jerome, Eur. Polym. J., 43, 3849 (2007) https://doi.org/10.1016/j.eurpolymj.2007.06.017
  24. J. Cohen, P. Cohen, S. G. West, and L. S. Aiken, Applied multiple regression/correlation analysis for the behavioral sciences, 3rd ed., Hillsdale, New Jersey, Lawrence Erlbaum Associates, 2003
  25. F. S. Dainton and K. J. Ivin, Quart. Rev., 12, 61 (1958) https://doi.org/10.1039/qr9581200061
  26. W. K. Busfield and R. M. Lee, Makromol. Chem., 176, 2017 (1975) https://doi.org/10.1002/macp.1975.021760710
  27. T. J. Fox, Bull. Am. Phys. Soc., 1, 123 (1956)
  28. S. Teramachi, A. Hasegawa, M. Atasuka, A. Yamashita, and N. Takemoto, Macromolecules, 11, 1206 (1978) https://doi.org/10.1021/ma60066a026
  29. A. Arun and B. S. R. Reddy, J. Polym. Sci. Part A: Polym. Chem., 41, 1632 (2003) https://doi.org/10.1002/pola.10705
  30. U. Senthilkumar, K. Ganesan, and B. S. R. Reddy, J. Polym. Res., 10, 21 (2003) https://doi.org/10.1023/A:1023938301946