Polyimide Multilayer Thin Films Prepared via Spin Coating from Poly(amic acid) and Poly(amic acid) Ammonium Salt

  • Ha, You-Ri (Department of Polymer Science and Engineering, Pusan National University) ;
  • Choi, Myeon-Cheon (Department of Polymer Science and Engineering, Pusan National University) ;
  • Jo, Nam-Ju (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim, Il (Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha, Chang-Sik (Department of Polymer Science and Engineering, Pusan National University) ;
  • Han, Dong-Hee (Advanced Materials and Application Research Lab., Korea Electrotechnology Research Institute) ;
  • Han, Se-Won (Advanced Materials and Application Research Lab., Korea Electrotechnology Research Institute) ;
  • Han, Mi-Jeong (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 발행 : 2008.12.31

초록

Polyimide (PI) multilayer thin films were prepared by spin-coating from a poly(amic acid) (PAA) and poly(amic acid) ammonium salt (PAAS). PI was prepared from pyromellitic dianhydride (PMDA) and 4,4'-oxydianiline (ODA) PAA. Different compositions of PAAS were prepared by incorporating triethylamine (TEA) into PMDA-ODA PAA in dimethylacetamide. PI multilayer thin films were spin-coated from PMDA-ODA PAA and PAAS. The PAAS comprising cationic and anionic moieties were spherical with a particle size of $20{\sim}40\;nm$. Some particles showed layers with ammonium salts, despite poor ordering. Too much salt obstructed the interaction between the polymer chains and caused phase separation. A small amount of salt did not affect the interactions of the interlayer structure but did interrupt the stacking between chains. Thermogravimetric analysis (TGA) showed that the average decomposition temperature of the thin films was $611^{\circ}C$. All the films showed almost single-step, thermal decomposition behavior. The nanostructure of the multilayer thin films was confirmed by X -ray reflectivity (XRR). The LF 43 film, which was prepared with a 4:3 molar ratio of PMDA and ODA, was comprised of uniformly spherical PAAS particles that influenced the nanostructure of the interlayer by increasing the interaction forces. This result was supported by the atomic force microscopy (AFM) data. It was concluded that the relationship between the uniformity of the PAAS particle shapes and the interaction between the layers affected the optical and thermal properties of PI layered films.

키워드

참고문헌

  1. P. K. Ho, J. S. Kim, J. H. Burroughes, H. L. Becker, T. M. Brown, F. Cacialli, and R. H. Friend, Nature, 404, 481 (2000)
  2. X. Zhang and J. Shen, Adv. Mater., 11, 1139 (1999) https://doi.org/10.1002/(SICI)1521-4095(199909)11:13<1139::AID-ADMA1139>3.0.CO;2-7
  3. J. D. Mendelson, C. J. Barrett, V. V. Chan, A. J. Pal, A. M. Mayes, and M. F. Rubner, Langmuir, 16, 5017 (2000) https://doi.org/10.1021/la000075g
  4. A. Laschewsky, E. Wischerhoff, M. Kauranen, and A. Persoons, Macromolecules, 30, 8304 (1997) https://doi.org/10.1021/ma961771j
  5. Y. He, S. Gong, R. Hattori, and J. Kanicki, Appl. Phys. Lett., 74, 2265 (1999) https://doi.org/10.1063/1.123862
  6. B. S. Kim, S. H. Bae, and Y. H. Park, Macromol. Res., 15, 357 (2007) https://doi.org/10.1007/BF03218799
  7. J. Y. Lee, J. H. Kim, and B. K. Rhee, Macromol. Res., 15, 234 (2007) https://doi.org/10.1007/BF03218781
  8. H. S. Lee, A. Roy, and A. S. Badami, Macromol. Res., 15, 160 (2007) https://doi.org/10.1007/BF03218768
  9. A. S. Mathews, I. Kim, and C. S. Ha, Macromol. Res., 15, 114 (2007) https://doi.org/10.1007/BF03218762
  10. K. Sato, S. Harada, A. Saiki, T. Kimura, T. Okubo, and K. Mukai, IEEE Trans., 9, 176 (1973)
  11. J. D. Rancourt and L. T. Taylor, Macromolecules, 20, 790 (1987) https://doi.org/10.1021/ma00170a015
  12. Y. Ding, B. Bikson, and J. K. Nelson, EPA Patent 1,086,737 (2001)
  13. C. Morris and A. Barry, J. Plastic Film & Sheeting, 23, 97 (2007) https://doi.org/10.1177/8756087907082342
  14. P. A. Chiralli, Langmuir, 18, 168 (2002) https://doi.org/10.1021/la011333s
  15. J. A. Kreuz, A. I. Endrey, F. P. Gay, and C. E. Sroog, J. Polym. Sci. Part A: Polym. Chem., 4, 2607 (1966) https://doi.org/10.1002/pol.1966.150041023
  16. M. Scaub, C. Fakirov, A. Schmidt, G. Lieser, G. Wenz, G. Wegner, P. A. Albouy, H. Wu, M. D. Foster, C. Majrkzak, and D. S. Satija, Macromolecules, 28, 1221 (1995) https://doi.org/10.1021/ma00108a059
  17. I. C. Kjaerm, J. Als-Nielsen, C. A. Helm, P. Tippmann-Krayer, and H. Mohwald, Thin Solid Films, 159, 17 (1988) https://doi.org/10.1016/0040-6090(88)90613-X
  18. F. Rieutord, J. J. Benattar, R. Rivoira, Y. Lepbtre, C. Blot, and D. Luzet, Acta Crystallogr., A45, 445 (1989)
  19. T. P. Russell, Mater. Sci. Rep., 5, 171 (1999) https://doi.org/10.1016/S0920-2307(05)80002-7
  20. D. L. Pavia, G. M. Lampaman, and G. S. Kriz, Spectroscopic Methods in Organic Chemistry, Harcourt College Publishers, USA, New York, 2001, p. 279