DOI QR코드

DOI QR Code

탄소섬유강화복합재료의 마식에 관한 연구

Study on Erosion of Carbon Fiber Reinforced Plastic Composite

  • Kim, Am-Kee (Division of Mechanical and Automotive Engineering, Kongju National University) ;
  • Kim, Il-Hyun (Graduate School of Mechanical Engineering, Kongju National University)
  • 발행 : 2008.04.30

초록

일방향 탄소섬유 강화 복합재료(CFRP)의 고체입자 마식 거동을 다양한 충돌각도 (${\alpha}$), 속도 (V) 및 섬유 방향 (${\beta}$)에 대하여 연구하였다. 실험결과 30o 충돌각도에서 최대 마식률을 나타내었고, 마식률은 멱함수 법칙 $E{\propto}\;V^n$에 따라 충돌속도에 크게 의존하였다. 본 연구에서는 이상의 결과로부터 일방향 탄소섬유 강화 복합재료의 마식률을 충돌속도, 충돌각도 및 섬유방향 각도로부터 예측하는 방법을 제안하였다.

The solid particle erosion behaviour of unidirectional carbon fiber reinforced plastic (CFRP) composites was investigated. The erosive wear of these composites was evaluated at different impingement angles ($30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$), different impact velocities (40, 55, 60, 70m/s) and at three different fiber orientations ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$). The erodent was SiC sand with the size $50-100{\mu}m$ of irregula. shapes. The result showed ductile erosion behaviour with maximum erosion rate at $30^{\circ}$ impingement angle. The fiber orientations had a significant influence on erosion. The erosion rate was strongly dependent on impact velocity which followed power law $E{\propto}\;V^n$. Based on impact velocity (V), impact angle (${\alpha}$) and fiber orientation angle (${\beta}$), a method was proposed to predict the erosion rate of unidirectional fiber reinforced composites.

키워드

참고문헌

  1. U. S. Tewari, A. P. Harsha, A. M. Hager, K. Friedrich, "Solid particle erosion of carbon fibre-and glass fibre-epoxy composites", J. Composites Science and Technology, Vol. 63, pp. 549-557, 2003. https://doi.org/10.1016/S0266-3538(02)00210-5
  2. N. M. Barkoula, J. Karger-Kocsis, "Effects of fiber content and relative fiber orientation on the solid particle erosion of GF/PP composites", Wear, Vol. 252, pp. 80-87, 2002. https://doi.org/10.1016/S0043-1648(01)00855-9
  3. I. M. Hutchings, "Ductile brittle transitions and wear maps for the erosion and abrasion of brittle materials", Journal of Physics D: Applied Physics, Vol. 25, pp. A212-A221, 1992. https://doi.org/10.1088/0022-3727/25/1A/033
  4. M. Roy, B. Vishwanathan, G. Sundararajan, "The solid particle erosion of polymer matrix composites", Wear, Vol. 171, pp. 149-161, 1994. https://doi.org/10.1016/0043-1648(94)90358-1
  5. A. W. Ruff, L. K. Ives, "Measurement of solid particle velocity in erosive wear", Wear, Vol. 35, p.195-199, 1975. https://doi.org/10.1016/0043-1648(75)90154-4
  6. K. Tsuda, M. Kubouchi, T. Sakai, A. H. Saputra, N. Mitomo, "General Method for predicting the sand erosion rate of GFRP", Wear, Vol 260, pp. 1045-1052, 2006. https://doi.org/10.1016/j.wear.2005.07.018
  7. S. Arjula, A. P. Harsha, "Study of erosion efficiency of polymers and polymer composites", Polymer testing, Vol. 25,pp. 188-196, 2006. https://doi.org/10.1016/j.polymertesting.2005.10.009
  8. K. V. Pool, C. K. H. Dharan, I. Finnie, "Erosive wear of composite materials", Wear, Vol. 107, pp. 1-12, 1986. https://doi.org/10.1016/0043-1648(86)90043-8
  9. I. Finnie, "Some reflections on the past and future of erosion," Wear, Vols. 186-187, pp. 1-10, 1995. https://doi.org/10.1016/0043-1648(95)07188-1