DOI QR코드

DOI QR Code

Study on Erosion of Carbon Fiber Reinforced Plastic Composite

탄소섬유강화복합재료의 마식에 관한 연구

  • Kim, Am-Kee (Division of Mechanical and Automotive Engineering, Kongju National University) ;
  • Kim, Il-Hyun (Graduate School of Mechanical Engineering, Kongju National University)
  • Published : 2008.04.30

Abstract

The solid particle erosion behaviour of unidirectional carbon fiber reinforced plastic (CFRP) composites was investigated. The erosive wear of these composites was evaluated at different impingement angles ($30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$), different impact velocities (40, 55, 60, 70m/s) and at three different fiber orientations ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$). The erodent was SiC sand with the size $50-100{\mu}m$ of irregula. shapes. The result showed ductile erosion behaviour with maximum erosion rate at $30^{\circ}$ impingement angle. The fiber orientations had a significant influence on erosion. The erosion rate was strongly dependent on impact velocity which followed power law $E{\propto}\;V^n$. Based on impact velocity (V), impact angle (${\alpha}$) and fiber orientation angle (${\beta}$), a method was proposed to predict the erosion rate of unidirectional fiber reinforced composites.

일방향 탄소섬유 강화 복합재료(CFRP)의 고체입자 마식 거동을 다양한 충돌각도 (${\alpha}$), 속도 (V) 및 섬유 방향 (${\beta}$)에 대하여 연구하였다. 실험결과 30o 충돌각도에서 최대 마식률을 나타내었고, 마식률은 멱함수 법칙 $E{\propto}\;V^n$에 따라 충돌속도에 크게 의존하였다. 본 연구에서는 이상의 결과로부터 일방향 탄소섬유 강화 복합재료의 마식률을 충돌속도, 충돌각도 및 섬유방향 각도로부터 예측하는 방법을 제안하였다.

Keywords

References

  1. U. S. Tewari, A. P. Harsha, A. M. Hager, K. Friedrich, "Solid particle erosion of carbon fibre-and glass fibre-epoxy composites", J. Composites Science and Technology, Vol. 63, pp. 549-557, 2003. https://doi.org/10.1016/S0266-3538(02)00210-5
  2. N. M. Barkoula, J. Karger-Kocsis, "Effects of fiber content and relative fiber orientation on the solid particle erosion of GF/PP composites", Wear, Vol. 252, pp. 80-87, 2002. https://doi.org/10.1016/S0043-1648(01)00855-9
  3. I. M. Hutchings, "Ductile brittle transitions and wear maps for the erosion and abrasion of brittle materials", Journal of Physics D: Applied Physics, Vol. 25, pp. A212-A221, 1992. https://doi.org/10.1088/0022-3727/25/1A/033
  4. M. Roy, B. Vishwanathan, G. Sundararajan, "The solid particle erosion of polymer matrix composites", Wear, Vol. 171, pp. 149-161, 1994. https://doi.org/10.1016/0043-1648(94)90358-1
  5. A. W. Ruff, L. K. Ives, "Measurement of solid particle velocity in erosive wear", Wear, Vol. 35, p.195-199, 1975. https://doi.org/10.1016/0043-1648(75)90154-4
  6. K. Tsuda, M. Kubouchi, T. Sakai, A. H. Saputra, N. Mitomo, "General Method for predicting the sand erosion rate of GFRP", Wear, Vol 260, pp. 1045-1052, 2006. https://doi.org/10.1016/j.wear.2005.07.018
  7. S. Arjula, A. P. Harsha, "Study of erosion efficiency of polymers and polymer composites", Polymer testing, Vol. 25,pp. 188-196, 2006. https://doi.org/10.1016/j.polymertesting.2005.10.009
  8. K. V. Pool, C. K. H. Dharan, I. Finnie, "Erosive wear of composite materials", Wear, Vol. 107, pp. 1-12, 1986. https://doi.org/10.1016/0043-1648(86)90043-8
  9. I. Finnie, "Some reflections on the past and future of erosion," Wear, Vols. 186-187, pp. 1-10, 1995. https://doi.org/10.1016/0043-1648(95)07188-1