DOI QR코드

DOI QR Code

The recent investigation and engineering application of YBCO bulk materials

  • Hong, Z (Cambridge University Engineering Department) ;
  • Jiang, Y (Cambridge University Engineering Department) ;
  • Viznichenko, R V (Cambridge University Engineering Department) ;
  • Coombs, T A (Cambridge University Engineering Department)
  • 발행 : 2008.05.31

초록

The application of bulk superconducting materials to electrical power systems is very attractive because bulk high temperature superconductors offer excellent electromagnetic properties. In recent years there has been significant progresses in the research and fabrication of superconducting bulk materials. Numerous efforts have been made worldwide to make bulk YBCO as a replacement of the conventional magnets to produce larger magnetic field and hence to improve the device performance in electrical power applications. This paper gives a comprehensive review of different applications of bulk HTS materials, concentrating in three areas including superconducting bearing, superconducting motors and high field magnets. The advantages of applying superconducting material into each application are analysed. The status of current research in each section is summarized and examples are given to demonstrate how YBCO bulk materials can benefit the design of electrical devices. Several numerical models which calculate the electromagnetic properties of bulk superconductors are introduced and finally the article concludes with a review on the studies of the demagnetisation effect in superconducting bulk magnets which is extremely relevant to applying superconducting technology to rotating machines.

키워드

참고문헌

  1. M. Murakami, Melt Processed High Temperature Superconductors, Singapore 1992
  2. C. K. McMichael, K. B. Ma, M. W. Lin, M. A. Lamb, R. L. Meng, Y. Y. Xue, P. H. Hor, and W. K. Chu, "Effects of material processing in high temperature superconducting magnetic bearings," Appl. Phys. Lett., vol. 59, p. 2442, 1991 https://doi.org/10.1063/1.105989
  3. F. C. Moon and P.-Z. Chang, "High-speed rotation of magnets on high Tc superconducting bearings," Appl. Phys. Lett., vol. 56, p. 397, 1990 https://doi.org/10.1063/1.102795
  4. H. J. Bornemann, T. Ritter, C. Urban, O. Zaitsev, K. Weber, and H. Rietschel, "Low friction in a flywheel system pith passive superconducting magnetic bearings," Applied Superconductivity, vol. 2, pp. 439-447, 1994 https://doi.org/10.1016/0964-1807(94)90034-5
  5. Q. Y. Chen, Z. Xia, K. B. Ma, C. K. McMichael, M. Lamb, R. S. Cooley, P. C. Fowler, and W. K. Chu, "Hybrid high Tc superconducting magnetic bearings for flywheel energy storage system," Appl. Supercond., vol. 9, p. 457, 1994
  6. T. A. Coombs, A. M. Campbell, I. Ganney, W. Lo, T. Twardowski, and B. Dawson, "Superconducting bearings in flywheels," Mater. Sci. Eng., vol. B, p. 225, 1998
  7. J. R. Hull, "Flywheels on a roll," IEEE Spectrum, vol. 34, pp. 20-25, 1997 https://doi.org/10.1109/MSPEC.1997.8057679
  8. J. R. Hull, T. M. Mulcahy, K. L. Uherka, R. A. Erck, and R. G. Abboud, "Flywheel energy storage using superconducting magnetic bearings," Applied Superconductivity vol. 2, pp. 449-455, 1994 https://doi.org/10.1016/0964-1807(94)90035-3
  9. H. Kameno, Y. Miyagawa, R. Takahata, and H. Ueyama, "A measurement of rotation loss characteristics of high-Tc superconducting magnetic bearings and active magnetic bearings," Applied Superconductivity, IEEE Transactions on, vol. 9, pp. 972 - 975, 1999 https://doi.org/10.1109/77.783460
  10. Y. Miyagawa, H. Kameno, R. Takahata, and H. Ueyama, "A 0.5 kWh flywheel energy storage system using a high-Tc superconducting magnetic bearing," IEEE Trans. Appl. Supercond., vol. 9, p. 996, 1999 https://doi.org/10.1109/77.783466
  11. Z. Hong, A. M. Campbell, and T. A. Coombs, "Numerical solution of critical state in superconductivity by finite element software," Supercond. Sci. Technol. 19 (2006)1246-1252, vol. 19, pp. 1246-1252, 2006
  12. Z. Hong, A. M. Campbell, and T. A. Coombs, "Computer Modelling of Magnetisation in High Temperature Bulk Superconductors," IEEE trans on Applied Science of Superconductor, vol. 17, p. 3761, 2007 https://doi.org/10.1109/TASC.2007.899108
  13. Y. Jiang, R. Pei, Z. Hong, J. Song, F. Fang, and T. A. Coombs, "Design and control of a superconducting permanent magnet synchronous motor," Supercond. Sci. Technol., vol. 20, pp. 585-591, 2007 https://doi.org/10.1088/0953-2048/20/7/001
  14. M. Majoros, B. A. Glowacki, A. M. Campbell, G. A. Levin, P. N. Barnes, and M. Polak, "Transport AC losses in striated YBCO coated conductors," IEEE. Trans. Appl. Supercond., vol. 15, p. 2819, 2005 https://doi.org/10.1109/TASC.2005.848234
  15. Y. Jiang, R. Pei, Q. Jiang, Z. Hong, and T. A. Coombs, "Control of a superconducting synchronous motor," Supercond. Sci. Technol., vol. 20, pp. 392-396, 2007 https://doi.org/10.1088/0953-2048/20/4/015
  16. L. Prigozhin, "Analysis of critical-state problems in type-II superconductivity," IEEE Trans. Appl. Superconductivity, vol. 7, pp. 3866-3873, 1997 https://doi.org/10.1109/77.659440
  17. E. H. Brandt, "Superconductors of finite thickness in a perpendicular magnetic field: Strips and slabs," Physical Review B, vol. 54, pp. 4246-4264, 1996 https://doi.org/10.1103/PhysRevB.54.4246
  18. E. H. Brandt, "Superconductor disks and cylinder in an axial magnetic field. I. Flux penetration and magnetization curves," Physical Review B, vol. 58, pp. 6506-6522, 1998 https://doi.org/10.1103/PhysRevB.58.6506
  19. E. H. Brandt, "Superconductor disks and cylinder in an axial magnetic field II Nonlinear and linear ac susceptibilities," Physical Review B, vol. 58, pp. 6523-6533, 1998 https://doi.org/10.1103/PhysRevB.58.6523
  20. L. Prigozhin, "Solution of Thin Film Magnetization Problems in Type-II Superconductivity," Journal of Computational Physics, vol. 144, pp. 180-193, 1998 https://doi.org/10.1006/jcph.1998.5978
  21. L. Prigozhin, "The Bean Model in Superconductivity: variational Formulation and Numerical Solution," Journal of Computational Physics, vol. 129, pp. 190-200, 1996 https://doi.org/10.1006/jcph.1996.0243
  22. G. Barnes, M. McCulloch, and D. Dew-Hughes, "Finite difference modelling of bulk high temperature superconducting cylindrical hysteresis machines," Supercond. Sci. Technol., vol. 13, pp. 229-236, 2000 https://doi.org/10.1088/0953-2048/13/2/319
  23. G. Barnes, M. McCulloch, and D. Dew-Hughes, "Applications and modelling of bulk HTSs in Brushless ac machines," Supercond. Sci. Technol., vol. 13, pp. 875-878, 2000 https://doi.org/10.1088/0953-2048/13/6/352
  24. G. Barnes, M. McCulloch, and D. Dew-Hughes, "Computer modelling of type II superconductors in applications," Supercond. Sci. Technol, vol. 12, pp. 518-522, 1999 https://doi.org/10.1088/0953-2048/12/8/308
  25. D. Ruiz-Alonso, T. A. Coombs, and A. M. Campbell, "Numerical analysis of high-temperature superconductors with the critical-state model," IEEE Trans. Appl. Superconductivity, vol. 14, pp. 2053-2063, 2004 https://doi.org/10.1109/TASC.2004.838316
  26. T. A. Coombs, A. M. Campbell, A. Murphy, and M. Emmens, "A fast algorithm for calculating the critical state in superconductors," in COMPEL-The International Journal for Computation and Mathemathics in Electrical and Electronic Engineering: 20(1):240-252, 2001 https://doi.org/10.1108/03321640110359967
  27. R. Brambilla, F. Grilli, and L. Martini, "Development of an edge-element model for AC loss computation of high-temperature superconductors," Supercond. Sci. Technol. , vol. 20, pp. 16-24 2007 https://doi.org/10.1088/0953-2048/20/1/004
  28. A. M. Campbell, "A new method of determining the critical state in superconductors," Supercond. Sci. Technol., vol. 20, pp. 292-295, 2007 https://doi.org/10.1088/0953-2048/20/3/031
  29. B. D. Josephson, "Macroscopic Field Equations for Metals in Equilibrium," Phys. Rev. A, , vol. 152, pp. 152-217, 1966
  30. G. Fuchs, P. Schatzle, G. Krabbes, S. Gru$\beta$, P. Verges, K.-H. Muller, J. Fink, and L. Schultz, "Trapped magnetic fields larger than 14 T in bulk $YBa_2Cu_3O_{7-x}$," Appl. Phys. Lett., vol. 76, p. 2107, 2000 https://doi.org/10.1063/1.126278
  31. M. Tomita and M. Murakami, "High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K," Nature (London), vol. 421, p. 517, 2003 https://doi.org/10.1038/nature01350
  32. T. A. Coombs, Z. Hong, X. Zhu, and G. Krabbes, "A novel heat engine for magnetizing superconductors," Supercond. Sci. Technol., vol. 21, p. 034001, 2008 https://doi.org/10.1088/0953-2048/21/3/034001
  33. L. J. M. Van de Klundert and H. H. J. Ten Kate, "Fully superconducting rectifiers and fluxpumps Part 1: Realized methods for pumping flux" Cryogenics, vol. 21, pp. 195-206, 1981 https://doi.org/10.1016/0011-2275(81)90195-8
  34. M. Tozawa, S. Ohkoshi, N. Kojima, and K. Hashimoto, "Ion-exchange synthesis and magneto-optical spectra of colored magnetic thin films composed of metal(II) hexacyanochromate(III)," Chem. Commun., pp. 1204 - 1205, 2003
  35. M. A. R. LeBlanc and C. T. M. Chang, "Dependence of the pinning force on magnetic fields in type II superconductors," Solid State Commun., vol. 6, 1968
  36. M. A. R. LeBlanc and H. G. Mattes, "New Magnetic Phenomenon in Type-II Superconductors," J. Appl. Phys., vol. 41, p. 1567, 1970 https://doi.org/10.1063/1.1659073
  37. K. Funaki and K. Yamafuji, "Abnormal Transverse-Field Effects in Nonideal Type II Superconductors I. A Linear Array of Monofilamentary Wires," Jpn. J. Appl. Phys., Part 1, vol. 21, 1982
  38. I. V. Baltaga, N. M. Makarov, V. A. Yampol'skii, L. M. Fisher, N. V. Il'in, and I. F. Voloshin, "Collapse of superconducting current in high-$T_c$ ceramics in alternating magnetic field" Phys. Lett. A, vol. 148, 1990
  39. J. L. Giordano, J. Luzuriaga, A. Badia, G. Nieva, and I. Ruiz-Tagle, "Magnetization collapse in polycrystalline YBCO under transport current cycles," Supercond. Sci. Technol., vol. 19, 2006
  40. L. M. Fisher and et al, "Collapse of the magnetic moment in a hard superconductor under the action of a transverse ac magnetic field," Physica C,, vol. 278, 1997
  41. C. P. Bean, "Rotational Hysteresis Loss in High-Field Superconductors," J. Appl. Phys., vol. 41, 1970
  42. L. M. Fisher and et al, "Suppression of the magnetic moment under the action of a transverse magnetic field in hard superconductors," Phys. Rev. B, vol. 61, 2000
  43. J. R. Clem, Phys. Rev. B, vol. 26, 1982
  44. A. F. Caballo-Sanchez, F. Perez-Rodriguez, and A. Perez-Gonzalez, "Magnetic behavior of granular high-Tc superconductors in the weak-link regime," J. Appl. Phys., vol. 90, 2001
  45. J. R. Clem and A. Perez-Gonzalez, "Flux-line-cutting and flux-pinning losses in type-II superconductors in rotating magnetic fields," Phys. Rev. B, vol. 30, 1984
  46. P. Vanderbemden, Z. Hong, T. A. Coombs, S. Denis, M. Ausloos, J. Schwartz, I. B. Rutel, N. H. Babu, D. A. Cardwell, and A. M. Campbell, "Behavior of bulk high-temperature superconductors of finite thickness subjected to crossed magnetic fields," PHYSICAL REVIEW B vol. 75, p. 174515, 2007 https://doi.org/10.1103/PhysRevB.75.174515
  47. N. Amemiya, K. Miyamoto, N. Banno, and O. Tsukamoto, "Numerical Analisys of AC Losses in High Tc Superconductors Based on E-j Characteristics Represented with n-Value," IEEE Trans. Appl. Superconductivity, vol. 7, pp. 2110-2113, 1997 https://doi.org/10.1109/77.621008
  48. R. Cloots, T. Koutzarova, J. P. Mathieu, and M. Ausloos, "From RE-211 to RE-123. How to control the final microstructure of superconducting single-domains," Supercond. Sci. Technol, vol. 18, 2005
  49. J. P. Mathieu, T. Koutzarova, A. Rulmont, J. F. Fagnard, Ph. Laurent, B. Mattivi, Ph. Vanderbemden, M. Ausloos, and R. Cloots, "From RE-211 to RE-123. How to control the final microstructure of superconducting single-domains," Supercond. Sci. Technol., vol. 18, 2005
  50. N. Hari Babu, M. Kambara, Y. H. Shi, D. A. Cardwell, C. D. Tarrant, and K. R. Schneider, "Processing and microstructure of single grain, uranium-doped Y-Ba-Cu-O superconductor," Supercond. Sci.
  51. P. Vanderbemden, Z. Hong, T. A. Coombs, M. Ausloos, N. H. Babu, D. A. Cardwell, and A. M. Campbell, "Remagnetization of bulk high-temperature superconductors subjected to crossed and rotating magnetic fields," Supercond. Sci. Technol., vol. 20, pp. 174-183, 2007 https://doi.org/10.1088/0953-2048/20/9/S10