DOI QR코드

DOI QR Code

Rapid Seismic Vulnerability Assessment Method for Generic Structures

일반 구조물에 대한 신속한 지진 취약성 분석 방법

  • Published : 2008.02.29

Abstract

Analytical probabilistic vulnerability analysis requires extensive computing effort as a result of the randomness in both input motion and response characteristics. In this study, a new methodology whereby a set of vulnerability curves are derived based on the fundamental response quantities of stiffness, strength and ductility is presented. A response database of coefficients describing lognormal vulnerability relationships is constructed by employing aclosed-form solution for a generalized single-degree-of-freedom system. Once the three fundamental quantities of a wide range of structural systems are defined, the vulnerability curves for various limit states can be derived without recourse to further simulation. Examples of application are given and demonstrate the extreme efficiency of the proposed approach in deriving vulnerability relationships.

해석적 방법에 의한 지진 취약성 분석 (fragility analysis)은 입력 거동과 응답 특성의 불확실성을 고려하기 위해 임의화된 확률 변수들 (randomized response variables)로 인하여 해석 과정에 상당한 노력과 시간이 요구된다. 본 연구에서는 구조물의 기본적인 특성인 강성, 강도 및 연성 능력에 따라 지진 취약도 곡선을 바로 도출할 수 있는 새로운 방법을 제안한다. 광범위한 구조물을 대표할 수 있는 일반화된 단자유도계의 동적 해석 결과로부터 로그 정규 취약성 곡선의 도출에 필요한 파라미터를 응답 데이터베이스에 저장한다. 이를 이용함으로써 구조물의 기본적인 특성 (강성, 강도, 연성 능력)만으로 동적해석 과정을 수행하지 않고도 한계상태 취약성 곡선을 도출할 수 있다. 본 논문의 적용 사례를 통해서 제안된 방법이 지진 취약성 곡선을 얻는데 매우 효율적임을 확인 할 수 있다.

Keywords

References

  1. Rossetto, T. and Elnashai, A. S., "Derivation of Vulnerability Functions for European-type RC Structures Based on Observational Data", Engineering Structures, Vol.25, No.10, 2003, pp.1241-1263 https://doi.org/10.1016/S0141-0296(03)00060-9
  2. ATC-13, Earthquake Damage Evaluation Data for California, Applied Technology Council, Redwood City, California, 1985, 492pp
  3. ATC-14, Evaluating the Seismic Resistance of Existing Buildings, Applied Technology Council, Redwood City, California, 1987, 370pp
  4. Lang, K., Seismic Vulnerability of Existing Buildings, IBK Bericht, Bd. 273, Institute of Structural Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland, 2002, 302pp
  5. ATC-40, Seismic Evaluation and Retrofit of Concrete Buildings, Applied Technology Council, Redwood City, California, 1996, 612pp
  6. FEMA-273, NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Washington, DC, 1997, 400pp
  7. Saiidi, M. and Sozen, M. A., "Simple nonlinear seismic analysis of RC structures", Journal of Structural Engineering, ASCE, Vol.107, No.5, 1881, pp.937-953
  8. Fajfar, P. and Fischinger, M., "N2-A Method for Non-Linear Seismic Analysis of Regular Structures", Proceedings from the 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, 1988, pp.111-116
  9. Qi, X. and Moehle, J. P., Displacement Design Approach for Reinforced Concrete Structures Subjected to Earthquakes, EERC 91/02, Earthquake Engineering Research Center, Berkeley, California, 1991, 202pp
  10. Drosos, V A., Synthesis of Earthquake Ground Motions for the New Madrid Seismic Zone, MS Thesis, Atlanta (GA), Georgia Institute of Technology, 2003, 300pp
  11. Wen, Y. K., Ellingwood, B. R., and Fig. 9 Vulnerability curves by the PVM and limit state probabilities Bracci, J., Vulnerability Function Framework for Consequence-Based Engineering, MAE Report 04-04, Mid-America Earthquake Center, University of Illinois at Urbana-Champaign, 2004, 160pp
  12. Pinto, P. E., Giannini, R., and Franchin, P., Seismic Reliability Analysis of Structures, IUSS Press, 2004, 370pp
  13. Shinozuka, M., Feng, M. Q., Kim, H. K., and Kim, S. H., "Nonlinear Static Procedure for Fragility Curve Development", Journal of Engineering Mechanics, ASCE, Vol.126, No.12, 2000, pp.1287-1295 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1287)
  14. Chopra, A. K. and Goel, R. K., Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Inelastic Structures, SDF Systems, PEER-1999/02, Pacific Earthquake Engineering Research Center, Berkeley, California, 1999, 202pp
  15. Gumbel, D. J., Statistical Theory of Extreme Values and Some Practical Applications, Applied Mathematics Series 33, National Bureau of Standards, Washington, DC, 1954, 51pp

Cited by

  1. A Study on Properties of Retarder via Tabletting Method vol.25, pp.2, 2013, https://doi.org/10.4334/JKCI.2013.25.2.201