DOI QR코드

DOI QR Code

Direct Inelastic Design of Reinforced Concrete Members Using Strut-and-Tie Model

스트럿-타이 모델을 이용한 철근콘크리트 부재의 직접 비탄성 설계

  • Published : 2008.06.30

Abstract

In the previous study, direct inelastic strut-and-tie model (DISTM) was developed to perform inelastic design of reinforced concrete members by using linear analysis for their secant stiffness. In the present study, for convenience in design practice, the DISTM was further simplified so that inelastic design of reinforced concrete members can be performed by a run of linear analysis, without using iterative calculations. In the simplified direct inelastic strut-and-tie model (S-DISTM), a reinforced concrete member is idealized with compression strut of concrete and tension tie of reinforcing bars. For the strut and tie elements, elastic stiffness or secant stiffness is used according to the design strategy intended by engineer. To define the failure criteria of the strut and tie elements, concrete crushing and reinforcing bar fracture were considered. The proposed method was applied to inelastic design of various reinforced concrete members including deep beam, coupling beam, and shear wall. The design results were compared with the properties and the deformation capacities of the test specimens.

선행 연구에서는 할선강성에 대한 선형해석을 수행함으로써 편리하게 비탄성 설계를 할 수 있는 직접 비탄성 스트럿-타이 모델이 개발되었다. 본 연구에서는 기존 직접 비탄성 스트럿-타이 모델을 개선하여, 반복계산 없이 할선강성에 대한 한번의 선형해석으로 철근콘크리트 부재의 비탄성 설계를 수행할 수 있는 간략화된 직접 비탄성 스트럿-타이 모델 (simplified direct inelastic strut-and-tie model, 이하 S-DISTM)을 개발하였다. S-DISTM은 철근콘크리트 부재를 콘크리트 압축 스트럿과 철근 인장 타이로 모델링한다. 스트럿과 타이 요소는 설계자의 설계 전략에 따라 탄성강성 또는 할선강성의 선형 재료 모델을 사용한다. 스트럿과 타이 요소의 파괴 기준을 정의하기 위하여 콘크리트 압축파괴 및 철근 인장파단 등을 고려하였다. S-DISTM을 사용하여 깊은보, 연결보, 전단벽 등 다양한 전단지배 철근콘크리트 부재의 비탄성 설계를 수행하였고, 비탄성 설계로 결정된 철근양, 변형 능력 등을 기존 실험 결과와 비교하였다.

Keywords

References

  1. American Concrete Institute (ACI), Building Code Requirements for Structural Concrete and Commentary, ACI 318- 05, ACI 318R-05, Farmington Hills, Mich., 2005
  2. Comite Euro-International du Beton/Federation Internationale de la Precontrainte (CEB-FIP), CEB-FIP Model Code 1990: Design Code, Thomas Telford, London, 1993, 437 pp
  3. 대한건축학회, 건축구조설계기준 (KBC), 건설교통부, 2005, 597 pp
  4. Schlaich, J., Schafer, K., and Jennewein, M., "Toward a Consistent Design of Structural Concrete," PCI Journal, Vol. 32, No. 3, 1987, pp. 74-150 https://doi.org/10.15554/pcij.05011987.74.150
  5. American Concrete Institute, Examples for the Design of Structural Concrete with Strut-and-Tie Models, SP-208, Farmington Hills, 2002, 242 pp
  6. Vecchio, F. and Collins, M. P., "The Modified Compression-Field Theory for Reinforced Concrete elements Subjected to Shear," ACI Structural Journal, Vol. 83, No. 2, 1986, pp. 219-231
  7. Hsu, T. T. C., "Toward a Unified Nomenclature for Reinforced Concrete Theory," Journal of Structural Engineering, ASCE, Vol. 122, No. 3, 1996, pp. 275-283 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(275)
  8. Wood, S. L.. "Minimum Tensile Reinforcement Requirements in Walls," ACI Structural Journal, Vol. 86, No. 4, 1990, pp. 582-591
  9. Kim, J., Seismic Evaluation of Shear-Critical Reinforced Concrete Columns and Their Connections, Ph.D. Dissertation, Univ. of New York at Buffalo, 1996, 391 pp
  10. Yun, Y., "Nonlinear Strut-Tie Model Approach for Structural Concrete," ACI Structural Journal, Vol. 97, No. 4, 2000, pp. 581-590
  11. 박홍근, 김윤곤, 엄태성, "할선강성을 이용한 직접 비탄성 스트럿-타이 모델," 콘크리트학회 논문집, 17권, 2호, 2005, pp. 201-212
  12. American Society of Civil Engineers (ASCE), NEHRP Guidelines for the Seismic Rehabilitation of Buildings, FEMA 273, Federal Emergency Management Council, Washington, DC, 1997, 369 pp
  13. American Society of Civil Engineers (ASCE), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA 356, Federal Emergency Management Council, Washington, DC, 2000, 429 pp
  14. Eom, T., Design-Oriented Inelastic Analysis for Earthquake Design of Reinforced Concrete Structures, PhD dissertation, Seoul National University, Seoul, February 2006, 326 pp
  15. Paulay, T., "Coupling Beams of Reinforced Concrete Shear Walls," Journal of the Structural Division, ASCE, Vol. 97, No. 3, 1971, pp. 843-862
  16. Park, H. G. and Eom, T. S., "Nonlinear Analysis of Reinforced Concrete Members using Truss Model," Journal of Structural Engineering, ASCE, Vol. 133, No. 10, 2007, pp. 1351-1363 https://doi.org/10.1061/(ASCE)0733-9445(2007)133:10(1351)
  17. Foster, S. J. and Gilbert, R. I., "Experimental Studies on High-Strength Concrete Deep Beams," ACI Structural Journal, Vol. 95, No. 4, 1998, pp. 382-390
  18. Galano, L. and Vignoli, A., "Seismic Behavior of Short Coupling Beams with Different Reinforcing-bar Layouts," ACI Structural Journal, Vol. 97, No. 6, 2000, pp. 876-885
  19. Oesterle, R. G. et al., Earthquake-resistant Structural Walls. Tests of Isolated Walls, Report to the National Science Foundation, Construction Technology Laboratories, Portland Cement Association, Skokie, Ill., 1976, 315pp
  20. Sittipunt, C., Wood, L. S., Lukkunaprasit, P., and Pattararattanakul, P., "Cyclic Behavior of Reinforced Concrete Structural Walls with Diagonal Web Reinforcement", ACI Structural Journal, Vol. 98, No. 4, 2001, pp. 554-562
  21. Lee, J. and Watanabe, F., "Shear Deterioration of Reinforced Concrete Beams Subjected to Reversed Cyclic Loading," ACI Structural Journal, Vol. 100, No. 4, 2003, pp. 480-489