신공법 오스터버그 셀 시험 적용 및 매스콘크리트 시공관리

Application of Osterberg Cell Test on The New Method and Construction Control of Mass Concrete

Jae-Sam Lee

Hong-Jae Kim

Heung-Jae Park

Dae-Kwon Kim

1. 머리말

청주 지역의 랜드마크적인 초고층 복합주거 타운을 형성하기 위한 G-Well City 프로젝트가 2007년 3월에 착공되어 현재 공 사가 진행중이다. (주)신영에서 발주하고 두산건설(주)에서 시 공하는 프로젝트로써 45층 5개동, 42층 2개동, 38층 2개동으로 총 9개 동의 초고층 주상복합 건물을 신축하는 프로젝트이다.

청주 G-Well City는 신도심과 부도심의 복합적 융화를 통하 여 문화·예술의 중심이며, 자급자족 복합타운을 형성하여 국제 적 랜드마크 타운을 형성하고자 한다. 고품격 문화가치를 창출하 기 위하여 기존의 주상복합의 형식과 차별화 되어진 방식으로 상 업 부분을 따로 분리시켜 입주자들의 재산 가치를 높이고 보다 더 쾌적한 주거생활을 영위하게 하려는 트렌드를 반영하고자 하 였다. 또한 고속도로, 청주국제공항과 청주시내의 접근성이 우수 하며, 신도심과 부도심의 매개역할을 할 수 있는 살아 있는 도시 즉 '펌핑 시티(pumping city)'의 개념을 가지고 있다<그림 1~3 참조>.

그림 1. 개념도

* 정회원, (주)렉스콘 연구개발팀 팀장

- jslee62@doosan.com
- ** 두산건설(주) 청주G-Well City 1공구 소장, 부장
- *** 두산건설(주) 청주G-Well City 소장, 부장
- **** 두산건설(주) 청주G-Well City 총괄소장, 상무

2. 공사 개요

박흥재'

G-Well City 프로젝트는 1블록과 2블록으로 나누어져 있다. 현재 2010년 까지는 1블록 공사가 진행된다. 38~45층의 주상 복합 건물 9동을 철근콘크리트 라멘구조로 신축하고 있으며, 상 세한 공사 개요는 <표 1>에 나타내었다.

그림 2. 조감도 및 야경 투시도

콘크리트학회지 제20권 2호 2008.3

표 1. 공사 개요

공 사 명	1블록 신축 공사
위 치	충청북도 청주시 흥덕구 복대동 대농 3지구 상업 2블록
설 계	해안건축사 사무소
감 리	삼우공가건축사무소(건축, 기계, 토목) 선엔지니어링(소방), 신화엔지니어링(전기)
공사기간	2007.03.05~2010.07.04(40개월)
구 조	철근콘크리트 라멘구조(플랫 슬래브)
공사규모	지하3층/지상37~45층 주상복합 9개동
대지면적	67,933.61 m ² (20,549.92평)
건축면적	20,694.87 m ² (6,260.20평)
건 폐 율	30.46%
용 적 률	584.93%
연 면 적	572,394.41 m ² (173,167.31평)
조경면적	22,601.15 m ² (6,838.47 ³)
주차대수	4,412대(법정 4,021대)
세대수	총 2,164세대
특이사항	공동도급(두산건설 90%, 한라건설 10%)

3. 공사 내용

당 현장은 2008년 1월 현재 공정률 10.1%로 진행되고 있으며, 2008년 2월 지하층 골조가 완료될 것으로 예상 된다.

본 기사에서는 2007년 3월부터 진행 되어졌던 기초말뚝 공사 와 매스콘크리트 관리에 대한 내용으로 기술하고자 한다.

기초말뚝은 RCD공법으로 계획 되어 있으며, 설계하중을 고려 할 때 6,000톤 이상의 반발력 및 재하대를 구성해야 하기 때문 에 안정성 및 비용적인 측면에 있어서 실하중을 이용하는 방법은 시험 수행이 어려웠다. 따라서 대구경 현장타설 말뚝에 적합한 재하 시험 방법인 오스터버그 셑(Osterberg cell, 이하 O-cell) 시험(신공법)을 적용하였다. 또한 기초 매스콘크리트 관리를 위 하여 공사 전 사전 3단계에 걸친 사전검토 작업을 실시하여 시공 시 매스콘크리트 관리를 위한 양생방법을 제안함으로써 안정된 원활한 공사를 진행하고자 하였다.

4. O-cell 테스트 신공법

O-cell 테스트란 대형 기초말뚝의 정재하중 시험이다. 이는 콘 크리트타설 전에 말뚝의 선단부에 유압책을 설치하고 타설 후에 유압책에 하중을 가하여 말뚝을 상하로 밀어내며 말뚝 변위를 측 정하는 것으로 일명 '양방향 재하 시험'이라고도 한다.

O-cell 테스트 신공법은 주면 마찰력과 선단지지력을 분리 측 정할 수 있는 장점이 있으며, 하중-변위량 관계를 이용하여 말뚝 머리 하중-침하량 곡선도를 구할 수 있다.

4.1 O-cell 테스트 시험 방법

O-cell 테스트 시험 방법은 <표 2>에 굴착에서부터 재하시 까지 에 대하여 단계별로 방법을 상세히 명시하였으며, 하중 및 변위 측 정 장치는 <표 3>에 하중, 변위, 변형률에 따라 사용되는 장치에 대하여 기술하였다. 또한 재하 방법에 대하여 <표 4>에 시험 시점 과 재하 단계 및 단계별 하중에 대하여 상세하게 서술하였다.

표 2. O-cell 테스트 시험 방법

단 계	시험 방법
굴 착	·감독관이 지정한 위치에서 현장 타설 말뚝 시공을 위한 굴착 실시
유압라인 및 계측기 설치	·O-cell과 유압라인, telltale, 변위계 등의 각종 계측기 를 승인된 자의 감독하에 철근망 부착 ·정해진 철근망 위치에서 상하 강철판에 O-cell 용접
굴착공검사 및 철근망 삽입	·굴착이 완료되면 굴착공 검사 실시 ·타설 후에는 O-cell이 부착된 철근망을 굴착공에 삽입
콘크리트 타설	·O-cell이 공 내에 안착되면 콘크리트 연속 타설
시험지역 보호	·콘크리트 타설 후 재하시험 종료 전까지 시험 말뚝 주 변에서 케이싱 삽입 및 인발금지
시험 종료 후처리	·O-cell 내부와 O-cell의 확장으로 인하여 말뚝 내부에 생긴 공간에 그라우팅 실시
재하수행	·주면 마찰력, 선단지지력 이 극한에 도달하거나 또는 O-cell의 용량이 초과될 때까지 재하

표 3. 하중 변위 측정 장치

항 목	측정 장치 및 내용
하 중	·말뚝 시공전에 셀에 연결된 유압호스에 에어컴프레셔를 이용하여 가압 ·유압 컨트롤러에 부착된 압력계를 통해 재하 하중을 측정
변 위	·셀의 상하부 강판에 부착된 LVDT 및 teltale의 변형 량을 reference beam을 기준하여 말뚝의 상향 및 하 항변위, 말뚝자체의 압축변형 등을 데이터로거로 자동 측정
변형률(하중 전이해석용)	·철근망 제작시 사전 설치하여 말뚝 내에 매설한 변형률 계(strain gauge)의 재하하중 단계별 변형률을 데이터 로거로 자동 측정

표 4. 재하 방법

항 목	재하 방법					
시험 시점	·원칙은 콘크리트 양생기간 7일이 요구됨. ·본 시험은 신뢰성을 높이기 위하여 타설 후 2주 경과시 점에서 재하하는 것으로 원칙으로 함. ·시험체의 압축강도가 없을 경우 28 MPa의 강도발현을 기준으로 시험을 실시함.					
재하 단계 및 단계별 하중	·O-cell 시험은 ASTM D1143-81와 ICD specification for piling and embedded retaining wall을 병행 참고하 여 시험함. ·재하하중은 최대시험하중의 10% 씩 ·하중유지시간은 30분(변위 측정 간격1,2,5,10,15,20,30 분)을 원칙으로 계획 ·데이터로거에 1분 간격으로 자동 측정/저장되도록 함.					

이상의 시험 방법에 따라 RCD 시공시 O-cell 테스트를 적용 하여 대형 기초말뚝의 신뢰도 높은 하중을 측정함으로써 이후 축 조되는 건축물의 안정성을 극대화 하는데 매우 중요한 역할을 하 고 있다. <그림 3>에 O-cell 테스트의 모식도와 전경을 나타내었 으며, 각 사진에 따른 명칭을 <표 5>에 명시하였다.

4.2 재하시험 종류 비교

재하시험 종류에 따라 각각을 비교해 보면 <표 6>과 같다. 표 에서 나타난 바와 같이 설계하중이 큰 경우 정재하시험이나 동재 하시험의 경우 재하하중이 O-cell에 비하여 1/10 수준으로 재하 하중의 범위가 매우 작기 때문에 대형 구조물 시공 현장에서는 일반적인 재하시험으로는 신뢰성 있는 데이터를 얻기가 매우 어 럽기 때문에 대구경 RCD 시공시 O-cell 테스트의 적용이 필요 할 것이다.

5. 매스콘크리트 관리

당 현장 기초매스콘크리트 두께는 2.5 m로 관리가 철저히 요 구되는 실정이다. 따라서 당 현장의 매스콘크리트는 수화열 해 석, 모의 부재 실험, 실물대 실험의 3단계에 걸쳐 사전 검토를 하였으며, 이를 통하여 양생 방법을 제안하여 실 구조물 타설시

표 5. 모식도 및 전경 설명

번호	명칭
1	Digital indicator
2	Reference beam
3	Top of shaft movement
4	5/16" stainless steel telltale road
5	O-cell portable computer
6	Hydraulic pump with pressure gauge
\bigcirc	Shaft compression telltale
8	Hydraulic supply line
9	O-cell expansion transducer
10	Reinforcing steel gage or carrier frame
(1)	O-cell 3,260 ton(32 MN)/1개당
12	Steel bearing plates

제안되어진 양생 방법을 적용토록 하였다.

5.1 수화열 해석

5.1.1 해석 방법 및 조건

해당 구조물의 보다 정확한 수화열 특성을 예측하기 위하여, 수화열해석프로그램 마이다스 시빌에 적용할 각종 환경조건에

그림 3. O-cell 테스트 모식도 및 전경

구분	O-cell 이용 정재하 시험	O-cell 이용 정재하 시험 정재하 시험	
하중재하 방법	말뚝선단부 혹은 중간에 O-cell을 설치하 고, 주면 마찰력과 선단지지력을 상호반력으 로 이용하여 재하	발력 말뚝을 이용하여 상부재하 프레임설치, 말뚝머리에서 유압잭으로 재하	말뚝머리에 시험하중의 1.0~1.5% 이내 무 게의 해머로 적당한 높이에서 낙하시켜 그 타격 에너지를 말뚝머리에 전달
하중지속시간	수시간	수시간	1/1,000초
부면마찰력과 선단지지력의 분리	주면과 선단에 대한 독립적인 하중-침하량 곡선을 구하기 때문에 구별가능	하중-침하곡선의 형태로부터 유추, 필요시 변형률계를 부착하여 하중전이 측정으로 지 지력 분리	파동 방정식에 의한 모델링을 통하여 해석 적 <u>으로</u> 구함
최대 가능 시험 하중(톤)	30,000	3,000	3,000
장 점	·당 현장과 같은 큰 설계하중에 대해 시험 이 용이 ·신뢰도가 상대적으로 높음	실제 하중을 재하함으로써 신뢰도가 높음	·시간과 비용이 상대적으로 적게 소요됨 ·말뚝의 건전도 과악가능
단 점	·시험 및 분석에 전문성이 요구됨 ·설치된 O-cell은 소모품으로 재사용이 불가능 ·시험하중이 작은 경우엔 오히려 비경제적 인수 있음	·시험시간 및 비용이 크다 ·설계하중이 큰 경우 2배 이상의 시험하중 을 재하하기 어려움	·시험 및 분석에 전문성이 요구됨 ·설계하중이 큰 경우 시험하중에 따른 해 머 무게에 따라 시험의 어려움 예상 ·상대적으로 신뢰도가 낮음
적용성	모든 지반조건 및 말뚝 종류에 적용가능	모든 지반조건 및 말뚝 종류에 적용가능	결과해석시 축적된 경험요구 필요시 정재하 시험과의 비교 요구됨
해석 방법	측정/분석된 하중-침하곡선에서 직접적으로 허용하중과 극한하중 결정	측정/분석된 하중-침하곡선에서 직접적으로 허용하중과 극한하중 결정	측정 가속도와 변형률 신호를 파동방정식에 의한 모델링을 통하여 혀용하중과 극한하중 을 결정

표 6. 재하 시험 종류 비교

관한 자료는 <표 7>과 같이 압축강도계수는 28일 기준으로 규격 강도를 만족하며, 플라이애쉬 25%를 치환한 배합에 대한 압축 강도 발현식으로 ACI code에서 제시한 식 (1)에 따라 산정하 며, 발열계수는 단열온도 상승시험 결과를 바탕으로 콘크리트 시 방서에서 제시한 식에 따라 구하도록 하고 기타 관련 자료는 기 존 문헌과 자료 및 시험을 통해 구하도록 한다. 그 외 열전달률 케이스 I, II, III은 각 각 4, 6, 8로 두어 피막양생재료의 특성 을 다변화하여 그 수화열 해석을 실시하도록 하였다.

모델링은 <표 8>과 같이 해당 구조물과 동일한 크기로 실시하 며, 온도균열발생확률이 가장 높을 것으로 판단되는 <그림 4>와 같이 해당 구조물의중심부 N06과 N26의 결과를 바탕으로 온도 균열지수를 구하도록 하였다.

$$F_{(t)} = K \times (1 - e^{(-a \times t)})$$
 (1)

$$f_{(t)} = t_{eq} \times f_{28} / (a + b \times t_{eq})$$
 (2)

5.1.2 해석 결과

수화열 해석 결과 양생재료별 최저온도균열지수 및 온도이력

표 7. 부재 모델링

항목 부재종류	크기(mm)(W×D×H)	설계강도(MPa)	배합 특성
매트 기초	$34,000 \times 47,000 \times 2,500$	30	OPC+FA25%

은 <표 9>과 같이 나타났으며, <그림 5>는 Case I의 시간별 등온선도를 나타낸 것이다.

수화열 해석에 적용된 부재의 높이는 2.5 m로서 콘크리트 그 자체의 높은 축열성능과 낮은 열전달율에 의해, 중심부 최고 온 도는 큰 변동 없이 양생재료별 중심부 최고온도가 모두 73~7 5℃ 내의 범위로 나타났지만, 표면부 온도는 피막양생재료의 특 성에 따라, 10℃ 가량 차이가 발생하여 중심부 최고온도 도달시 중심부와 표면부 온도차는 Case I일 때 23.7℃, Case II일 때

표 8. 수화열 해석을 위한 입력 데이터

재료의 물성	사용 재질	콘크리트	지반
비열(kcal/kg°C))	0.25	0.20
밀도(kg/m ³)		2,340	1,800
열전도율(kcal/r	nh℃)	2.30	1.7
	Case I	4.0	-
열전달률	Case II	6.0	-
(kcal/m²h℃)	Case III	8.0	-
	유로폼	8.0	-
외기온도(℃)		24.2	-
콘크리트 초기용	은도(℃)	30.0	25.0
28일 압축강도(MPa)	30.0	-
압축강도계수		a=6.0 b=0.79	_
발열함수		K=49.800 α=0.903	-

그림 4.1/4 부재모델 중 해석 지점

표 9. 양생재료별 수화열 해석 결과

	치고 오드				
피막양생재 료(열전달율)	피막양생재 료(열전달율) 되고 근도 (hr)	중심부 최고 온도 (T)	최고 온도 시 표면부 온도(t)	중심부 표면부 온도차(T-t)	최저 온도 균열 지수
Case I (4.0)	85	74.5	50.8	23.7	2.35
Case II (6.0)	82	74.1	45.1	29.0	1.74
Case III (8.0)	80	73.8	41.3	32.5	1.47

29.0℃, Case Ⅲ일 때 32.5℃를 나타내어 열 전달률이 낮을수 록 온도균열지수는 높게 나타나 온도균열발생확률이 낮은 것으 로 나타났다.

5.2 모의부재 성능 실험

5.2.1 모의 부재 제작

모의부재 실험은 <표 10>의 플라이애쉬 25%를 치환한 배합으 로 <그림 6>과 같이, 외경 1,000 mm의 정육면체 거푸집 내부에 상부 표면을 제외한 5면은 실구조물과 유사한 발열특성을 얻기 위해 발포폴리스티렌(100 mm)으로 단열시킨 거푸집에 타설하 도록 하였다.

상부표면은 <표 11>에서 나타낸 바와 같이 실시공에서 가장 많이 사용되고 있는 피막양생재료인 PE 필름+ 양생포, PE 필름 에 비해 상대적으로 단열성능이 뛰어날 것으로 판단되는 에어캡 매트+블루 시트, 그리고 단열성능이 가장 우수할 것으로 판단되 는 PE 필름+ 발포폴리스티렌(100 mm)의 3가지 경우에 대해 수화열을 측정하였다.

표	10.	실험	배합표
---	-----	----	-----

W/B S/a	S/a			단위	비재료량	(kg/m ³)		
(%)	(%)	W	В	С	FA	S	G	AD(%)
39.0	45.8	165	423	317	106	787	957	4.23 (1.00)

(e) 60시간 경과

(d) 40시간 경과

(g) 100시간 경과

(h) 200시간 경과

(i) 300시간 경과

그림 5. Case I(열전달률 4.0) 시간별 등온선도

그림 6. 모의부재 간략도 및 사진

콘크리트학회지 제20권 2호 2008.3

표 11. 모의부재별 양생 방법

구 분	피막양생재료(표면)	표면을 제외한 5면
Case A	PE 필름+양생포	발포폴리스티렌(100 mm)
Case B	에어캡 매트+블루 시트	발포폴리스티렌(100 mm)
Case C	PE 필름+ 발포폴리스티렌 (100 mm)	발포폴리스티렌(100 mm)

타설 이후, 시간의 흐름에 따른 각 시험체의 표면부, 중심부, 하부의 온도 그리고, 외기온도를 측정함으로써 콘크리트 중심부 최고 온도 시 표면부와의 온도차를 비교함으로써, 피막양생재료 변화에 따른 특성을 검토하였다.

5.2.2 성능 실험 결과

양생재료별 모의부재 실험을 실시하며, 측정한 수화열이력결 과 <표 12>과 같이 중심부 최고 온도 도달시간은 Case A, B, C 모두 36시간에 나타났으며, 중심부 최고온도는 Case B와 Case C 2가지 경우가 63.6℃로 측정되어, Case A에 비해 다소 높은 것으로 나타났다. 중심부 최고 온도시 표면부 온도는 Case C가 60.4℃, Case B가 57.7℃, Case A가 54.2℃로 나타나, 중심 부 최고온도시의 중심부와 표면부와의 온도차는 Case C, B, A 순으로 작게 나타났다. 수화열에 의한 온도균열은 중심부와 표면 부의 온도차에 따라 발생되는 인장응력이 허용응력을 벗어나게 되면 발생함으로, 중심부와 표면부의 온도차가 작은 Case C와 Case B가 유효한 방법이라 할 수 있다. 하지만 Case C의 경우, 현장에서의 사용성과 전용성이 낮으므로 실 시공에 있어서는 Case B가 다소 유효할 것으로 판단된다.

5.3 실물대 시험을 통한 검증

5.3.1 검증 방법

실물대 검증 시험은 수화열해석 결과와 모의부재실험 결과를 통해 온도균열발생확률을 효율적으로 저감 시킬 것으로 판단되 는 피막양생재료를 사용하여, 당 현장의 타워기초 타설 위치에 최소단면적 치수 2.5 m 이상으로 제작하여 온도응력에 대해 가 장 취약할 것으로 판단되는 지점 1개소에 <그림 7>과 같이 수화

Ŧ	12.	Case	별	수화열	측정	결고
---	-----	------	---	-----	----	----

구 분	최고 온도 도달 시간 (hr)	온도(°C)		
		중심부 최고 온도 (T)	최고 온도시 표면부온도(t)	중심부와 표면부 온도차(T-t)
Case A	36	63.3	54.2	9.1
Case B	36	63.6	57.7	5.9
Case C	36	63.6	60.4	3.2

그림 7. 부재 크기 및 Thermo-couple 매립 위치도

열 센서를 '•' 부위에 콘크리트 부재의 상부표면에서 100 mm 아 랫부분에 1점, 중심부에 1점, 하부 바닥에서 100 mm 윗부분에 1 점을 매설하고 대기에 1점을 설치하여 실물대 부재의 수화온도를 측정하도록 하였다.

5.3.2 검증 결과

아래 <표 13>는 Case I의 수화열해석 결과와 에어캡 매트+ 블루 시트를 적용한 실물대 시험 결과를 요약하여 나타낸 것이 며, <그림 8>은 약 162시간 동안 1시간 간격으로 실물대 부재 온도이력을 측정하여 그래프로 나타낸 것이다. 콘크리트 타설 후 실물대 부재 중심부 최고온도는 85.1℃를 나타났으며, 타설 후 67시간이 경과한 이후부터 85.1℃로 약 10시간 동안 최고온도 를 유지하였다. 중심부 최고 온도도달시점을 전후로 온도상승비 와 하강비가 동일하다고 볼 때, 중심부 최고온도 도달시간은 약

표 13. 실물대 부재 온도측정 결과 및 수화열 해석 결과

구분	최고 온도 도달 시간 (hr)	온도(°C)		
		중심부 최고 온도(T)	최고 온도시 표면부온도(t)	중심부와 표면부 온도차(T-t)
Case I 해석 결과	85	74.5	50.8	23.7
실물대 시험 측정 결과	72	85.1	63.9	21.2

그림 9. 실물대 부재 및 전경

(a) 데이터로거 설치

(c) 타설 후 표면마감

(d) 에어캡 매트+블루시트 설치

72시간 수준인 것으로 나타났다.

이때 표면부 온도는 63.9℃로 중심부와 표면부간 온도차는 21.2℃로 나타났다. 온도균열에 대해 가장 취약할 것으로 판단 되는 시점과 지점에 대한 중심부와 표면부간 온도차는 실물대 시 험에서 21.2℃로 수화열해석결과에서 23.7℃로 나타나 실물대 시험의 온도차가 2.5℃ 작게 나타났으나, Case I의 수화열 해 석 결과와 유사한 결과를 보였다.

6. 맺음말

두산건설에서 시공하고 있는 청주 G-Well City 현장에서는 RCD공사의 기초말뚝의 정확한 재하하중을 측정할 수 있는 신공 법인 O-cell 테스트를 적용하여 보다 안정적인 기초말뚝 공사를 수행하고 있으며, 또한 매스콘크리트 관리에 있어서 현장 타설 전 단계적인 사전 검토를 통하여 시공시 양생 방법을 제안함으로 써 보다 우수한 품질의 구조물을 시공하는데 노력하고 있다.
두산건설 G-Well City 현장에서는 상부 구조체 및 마감 공정
에 있어서도 새로운 기술과 공법을 도입하여 효율적이고 보다 안
정적인 시공을 하도록 할 것이다.

참고문헌

- 1. 건설교통부 제정 사단법인 대한건축학회, "건축 공사표준시방서", 2006.
- 2. 한국콘크리트학회, "콘크리트표준시방서", 한국콘크리트학회, 1999.
- 3. 마이다스아이티 가자단 외 118명, "Civil 2006, 01. Getting Started & Tutorials", "Civil 2006, 02. Analysis for Civil Sturucture", 마이다스아이티, 2006.