DOI QR코드

DOI QR Code

Antioxidative Activity of Volatile Compounds in Flower of Chrysanthemum indicum, C. morifolium, and C. zawadskii

감국, 국화 및 구절초 꽃 휘발성 성분의 항산화활성

  • Woo, Koan-Sik (Crop Post-Harvest Technology Division, National Institute of Crop Science, Rural Development Administration) ;
  • Yu, Jung-Sik (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Hwang, In-Guk (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Lee, Youn-Ri (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Lee, Chul-Hee (Dept. of Horticultural Science, Chungbuk National University) ;
  • Yoon, Hyang-Sik (Chungcheongbuk-do Agricultural Research and Extension Service) ;
  • Lee, Jun-Soo (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Jeong, Heon-Sang (Dept. of Food Science and Technology, Chungbuk National University)
  • Published : 2008.06.30

Abstract

The objective of this study was to compare the aroma characteristics and antioxidant activity of Chrysanthemum indicum Linne (CIL), C. morifolium Ramat (CMR) and C. zawadskii var Latilobum (CZL). The volatile compounds were extracted by simultaneous steam distillation extraction and identified with gas chromatography/mass spectrometer. The major volatile compounds of Chrysanthemum sp. were camphene, 1,8-cineole, benzene, pinocarvone, bicyclo-2,2,1-heptan-2-ol, ${\beta}$-caryophyllene, 3-cyclohexen-1-ol, ${\gamma}$-curcumene, zingiberene and ${\beta}$-bisabolene. The DPPH radical scavenging activity (EDA, %) of volatile compounds in CIL, CMR and CZL were 30.57, 46.36, and 51.72%/g sample, respectively. The ascorbic acid equivalent antioxidant capacity (AEAC) of volatile compounds were 34.99, 35.31, and 38.48 mg AEAC/g, respectively.

감국, 국화 및 구절초 등 3종의 국화과 식물에 대해 향기성분을 분석하고 향기성분 추출물의 항산화활성을 측정하고자 3종의 국화과 식물에 대한 향기특성을 SDE법으로 추출하여 GC/MS로 분석한 결과 camphene, 1,8-cineole, benzene, pinocarvone, bicyclo-2,2,1-heptan-2-ol, trans-caryophyllene, 3-cyclohexen-1-ol, ${\gamma}$-curcumene, zingiberene, ${\beta}$-bisabolene 등이 검출되어 주요 향기성분임을 확인 할 수 있었다. 또한 감국, 국화 및 구절초의 향기추출물에 대한 전자공여능을 DPPH법으로 측정한 결과 1 g/mL의 농도에서 각각 30.57, 46.36 및 51.72%로 나타내어 구절초 추출물이 항산화활성이 가장 높은 것으로 나타났다. 또한 총항산화력을 ABTS법으로 측정한 결과 각각 34.99, 35.31 및 38.48mg AEAC/g으로 나타내어 전자공여능과 마찬가지로 구절초가 항산화활성이 가장 높은 것으로 나타났다. 이러한 이유는 구절초가 camphene, 1,8-cineole, camphor, germacrene D, myrtenol 등의 성분이 감국이나 국화보다 다량 함유되어 있어 항산화활성이 높게 나타난 것으로 생각된다.

Keywords

References

  1. Yoon OH, Cho JS. 2007. Optimization of extraction conditions for hot water extracts from Chrysanthemum indicum L. by response surface methodology. Korean J Food Cookery Sci 23: 1-8
  2. Ryu SY, Choi SU, Lee SH, Ahn JW, Zee OP. 1994. Antitumor activity of some phenolic components in plants. Arch Pham Res 17: 42-44 https://doi.org/10.1007/BF02978247
  3. Park NY, Kwon JH, Kim HK. 1998. Optimization of extraction conditions for ethanol extracts from Chrysanthemum morifolium by response surface methodology. Korean J Food Sci Technol 31: 1189-1196
  4. Nam SH, Yang MS. 1995. Antibacterial activities of extracts from Chrysanthemum boreale M. J Agric Food Chem 38: 269-272 https://doi.org/10.1021/jf00091a060
  5. Nam SH, Yang MS. 1995. Isolation of cytotoxic substances of extracts from Chrysanthemum boreale M. J Agric Food Chem 38: 273-277 https://doi.org/10.1021/jf00091a061
  6. Jang DS, Park KH, Choi SU, Nam SH, Yang MS. 1997. Antibacterial substances of the flower of Chrysanthemum zawadskii Herbich var. Iatilobum Kitamurs. Agric Chem Biotechnol 40: 85-88
  7. Lee CG, Yu CY, Heo K, Jung YS, Cho DH, Yoon BS. 2000. Study on the photosynthetic characteristics of Chrysanthemum zawadskii H. Inst Agric Sci Kangwon Nat Univ J Agric Sci 11: 107-112
  8. Artacho R, Serrano MF, Lopez MD. 1995. Determination of organic sulphur compounds in garlic extracts by gas chromatography and mass spectrometry. Food Chem 53: 91-93 https://doi.org/10.1016/0308-8146(95)95792-5
  9. Woo KS, Yoon HS, Lee J, Jeong HS. 2007. Characteristics and antioxidative activity of volatile compounds in heated garlic (Allium sativum). Food Sci Biotechnol 16: 822-827
  10. Jeong JY, Woo KS, Hwang IG, Yoon HS, Lee YR, Jeong HS. 2007. Effects of heat treatment and antioxidant activity of aroma on garlic harvested in different cultivation areas. J Korean Soc Food Sci Nutr 36: 1637-1642 https://doi.org/10.3746/jkfn.2007.36.12.1637
  11. Nikerson GB, Likens ST. 1996. Gas chromatographic evidence for occurrence of hop oil components in Beer. J Chromatogr 21: 1-5 https://doi.org/10.1016/S0021-9673(01)91252-X
  12. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1203 https://doi.org/10.1038/1811199a0
  13. Choi Y, Lee SM, Chun J, Lee HB, Lee J. 2006. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem 99: 381-387 https://doi.org/10.1016/j.foodchem.2005.08.004
  14. Forni LG, Mora-Arellano VO, Packer JE, Willson RL. 1986. Nitrogen dioxide and related free radicals: electron-transfer reactions with organic compounds in solutions containing nitrite or nitrate. J Chem Soc 2: 1-6
  15. Min YK, Yoon HS, Kim J, Jeong HS. 1999. Aroma characteristics of applemint (Mentha rotundifolia (L.) Huds) with different extraction methods. Korean J Food Sci Technol 31: 1465-1470
  16. Shin SW. 2005. In vitro inhibitory activities of essential oils from Rosmarinus officinalis L. against antibiotic-susceptible and resistant strains of some pathogenic bacteria. Korean J Pharmacogn 36: 252-256
  17. Kim JO, Kim YS, Lee JH, Kim MN, Rhee SH, Moon SH, Park KY. 1992. Antimutagenic effect of the major volatile compounds identified from mugwort (Artemisia asictica nakai) leaves. J Korean Soc Food Nutr 21: 308-313
  18. Kubo I, Muroi H, Himejima M. 1992. Antimicrobial activity of green tea flavor components and their combination effects. J Agric Food Chem 40: 245-248 https://doi.org/10.1021/jf00014a015
  19. Ahn JC, Kim MY, Kim OT, Kim KS, Kim SH, Kim SH, Hwang B. 2002. Selection of the high yield capacity of Hwangchil Lacquer and identification of aromatic components in essential oil of Dendropanax morbifera Lev. Korean J Med Crop Sci 10: 126-131
  20. Gardeli C, Papageorgiou V, Mallouchos A, Theodosis K, Komaitis M. 2008. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem 107: 1120-1130 https://doi.org/10.1016/j.foodchem.2007.09.036
  21. Choe SH, Im SI, Jang EY, Jo YS. 2004. Volatile components of flower and seed of safflower. Korean J Food Sci Technol 36: 196-201
  22. Cruz-Canizares JD, Domenech-Carbo MT, Gimeno- Adelantado JV, Mateo-Castro R, Bosch-Reig F. 2005. Study of Burseraceae resins used in binding media and varnishes from artworks by gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry. J Chromatogr A 1093: 177-194 https://doi.org/10.1016/j.chroma.2005.07.058

Cited by

  1. Antimicrobial Activity of Extracts and Fractions of Ginkgo biloba Leaves, Seed and Outer Seedcoat vol.40, pp.1, 2011, https://doi.org/10.3746/jkfn.2011.40.1.007
  2. Identification of Floral Scent in Chrysanthemum Cultivars and Wild Relatives by Gas Chromatography-Mass Spectrometry vol.20, pp.4, 2015, https://doi.org/10.3390/molecules20045346
  3. Antioxidative and Antigenotoxic Activity of White and Yellow Chrysanthemum morifolium Ramat Extracts vol.41, pp.3, 2012, https://doi.org/10.3746/jkfn.2012.41.3.289
  4. Vinegar Produced from Chrysanthemum zawadskii and Pearl Shell vol.25, pp.1, 2012, https://doi.org/10.9799/ksfan.2012.25.1.090
  5. Classification of Korean Chrysanthemum species based on volatile compounds using cluster analysis and principal component analysis vol.57, pp.6, 2014, https://doi.org/10.1007/s13765-014-4162-5
  6. Volatile Flavor Compounds in the Leaves of Fifteen Taxa of Korean Native Chrysanthemum Species vol.32, pp.4, 2014, https://doi.org/10.7235/hort.2014.13163
  7. Effect of Dendranthema indicum Extracts on Cell and DNA Damage Induced by Oxidative Stress vol.21, pp.12, 2011, https://doi.org/10.5352/JLS.2011.21.12.1698
  8. Emission Properties of Volatile Compounds from Medicine Herb Residues Board vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.430
  9. Generation of expressed sequence tags for discovery of genes responsible for floral traits of Chrysanthemum morifolium by next-generation sequencing technology vol.18, pp.1, 2017, https://doi.org/10.1186/s12864-017-4061-3
  10. Inhibitory Effect ofChrysanthemum zawadskiiHerbich var.latilobumKitamura Extract on RANKL-Induced Osteoclast Differentiation vol.2013, 2013, https://doi.org/10.1155/2013/509482
  11. Cyclic voltammetric analysis of antioxidant activity in cane sugars and palm sugars from Southeast Asia vol.118, pp.3, 2010, https://doi.org/10.1016/j.foodchem.2009.05.030
  12. Biological Activity of Extracts from Chrysanthemum incidicum Linne by Ultrafine Grinding vol.43, pp.1, 2014, https://doi.org/10.3746/jkfn.2014.43.1.110
  13. Antihepatotoxic and Antigenotoxic Effects of Herb Tea Composed of Chrysanthemum morifolium Ramat. vol.40, pp.1, 2011, https://doi.org/10.3746/jkfn.2011.40.1.078
  14. 구절초 꽃 추출물의 항산화, 항염증 및 멜라닌 생성 억제 효과에 관한 연구 vol.33, pp.4, 2016, https://doi.org/10.12925/jkocs.2016.33.4.762
  15. 초미세 분쇄한 감국으로부터 추출된 phenolic 화합물의 xanthine oxidase 저해 효과 vol.27, pp.8, 2008, https://doi.org/10.5352/jls.2017.27.8.902
  16. 국내 육성 감국의 품종별 향기성분 비교 분석 vol.28, pp.12, 2008, https://doi.org/10.5352/jls.2018.28.12.1523
  17. Characterization of Composition and Antifungal Properties of Leaf Secondary Metabolites from Thirteen Cultivars of Chrysanthemum morifolium Ramat vol.24, pp.23, 2008, https://doi.org/10.3390/molecules24234202
  18. Chrysanthemi Zawadskii var. Latilobum Attenuates Obesity-Induced Skeletal Muscle Atrophy via Regulation of PRMTs in Skeletal Muscle of Mice vol.21, pp.8, 2008, https://doi.org/10.3390/ijms21082811
  19. Unraveling Natural Products’ Role in Osteoarthritis Management—An Overview vol.9, pp.4, 2008, https://doi.org/10.3390/antiox9040348
  20. Dendranthema zawadskii var. lucidum (Nakai) J.H. Park Extract Inhibits Cellular Senescence in Human Dermal Fibroblasts and Aging-Related Inflammation in Rats vol.9, pp.5, 2021, https://doi.org/10.3390/pr9050801